Thermoelectric Properties of Thiospinel-Type CuCo2S4

  • Yudong Lang
  • Lin Pan
  • Changchun Chen
  • Yifeng WangEmail author


Eco-friendly thiospinel-type CuCo2S4 material has been investigated as a potential thermoelectric material. The temperature, T, dependence of electrical resistivity, ρ, of CuCo2S4 shows a metallic conductivity (∂ρ/∂T > 0) and a strong degenerate state, in the range of 323–723 K. Besides a high carrier concentration consistent with the metallic nature, its Hall mobility is still unexpectedly estimated to be 8.5 cm2 V−1 s−1 at room temperature. The positive Seebeck coefficient S confirms a p-type carrier conduction. Similar to most of the transition-metal spinel chalcogenides, the S value is very low, 12–36 μV K−1 at 323–723 K. As a result, a relatively low power factor PF&!thinsp; ∼ 0.35 mW m−1 K−2 was obtained at 723 K. Due to the dominant role of electronic thermal conductivity, the total thermal conductivity к was high and increases with a linear dependence on T. However, the intrinsic lattice conductivity кl was relatively low, ranging from 1.48 W m−1 K−1 at 323 K to 0.57 W m−1 K−1 at 723 K. It follows there is a T−1 dependence indicative of Umklapp type phonon–phonon interaction. Importantly, the intrinsically low кl in CuCo2S4 is attributed to multiple mechanisms, mainly including the large unit cell with primarily octahedral coordination, the high distortion and complexity of the structure, and additional interfacial thermal resistance.


Thiospinel CuCo2S4 thermoelectric metallic lattice thermal conductivity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This research was supported by the Natural Science Foundation of China under Grant Nos. 51272103, 51672127 and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).


  1. 1.
    F.J. Disalvo, Science 285, 703 (1999).CrossRefGoogle Scholar
  2. 2.
    D.M. Rowe, Thermoelectrics Handbook: Macro to Nano (Boca Raton: CRC/Taylor & Francis, 2005), pp. 1–5.CrossRefGoogle Scholar
  3. 3.
    C. Xiao, Z. Li, K. Li, P. Huang, and Y. Xie, Acc. Chem. Res. 47, 1287 (2014).CrossRefGoogle Scholar
  4. 4.
    K. Vandaele, S.J. Watzman, B. Flebus, A. Prakash, Y. Zheng, S.R. Boona, and J.P. Heremans, Mater. Today Phys. 1, 39 (2017).CrossRefGoogle Scholar
  5. 5.
    T. Mori, Small 13, 1702013 (2017).CrossRefGoogle Scholar
  6. 6.
    J.P. Heremans, B. Wiendlocha, and A.M. Chamoire, Energy Environ. Sci. 5, 5510 (2012).CrossRefGoogle Scholar
  7. 7.
    Y. Tian, M.R. Sakr, J.M. Kinder, D. Liang, M.J. Macdonald, R.L.J. Qiu, H.J. Gao, and X.P.A. Gao, Nano Lett. 12, 6492 (2012).CrossRefGoogle Scholar
  8. 8.
    Y. Pei, X. Shi, A. Lalonde, H. Wang, L. Chen, and G.J. Snyder, Nature 473, 66 (2011).CrossRefGoogle Scholar
  9. 9.
    J. Martin, L. Wang, L. Chen, and G.S. Nolas, Phys. Rev. B 79, 115311 (2009).CrossRefGoogle Scholar
  10. 10.
    L. Pan, S. Mitra, L.D. Zhao, Y. Shen, Y. Wang, C. Felser, and D. Berardan, Adv. Funct. Mater. 26, 5149 (2016).CrossRefGoogle Scholar
  11. 11.
    H. Wang, A.D. Lalonde, Y. Pei, and G.J. Snyder, Adv. Funct. Mater. 23, 1586 (2013).CrossRefGoogle Scholar
  12. 12.
    Y. He, P. Lu, X. Shi, F.F. Xu, T.S. Zhang, G.J. Snyder, C. Uher, and L.D. Chen, Adv. Mater. 27, 3639 (2015).CrossRefGoogle Scholar
  13. 13.
    L.D. Zhao, J. He, S. Hao, C.I. Wu, T.P. Hogan, C. Wolverton, V.P. Dravid, and M.G. Kanatzidis, J. Am. Chem. Soc. 134, 16327 (2012).CrossRefGoogle Scholar
  14. 14.
    S.R. Brown, S.M. Kauzlarich, F. Gascoin, and G.J. Snyder, Chem. Mater. 18, 1873 (2006).CrossRefGoogle Scholar
  15. 15.
    K. Kurosaki, A. Kosuga, H. Muta, M. Uno, and S. Yamanaka, Appl. Phys. Lett. 87, 804 (2005).CrossRefGoogle Scholar
  16. 16.
    S. Lin, W. Li, S. Li, X. Zhang, Z. Chen, Y. Xu, Y. Chen, and Y. Pei, Joule 1, 816 (2017).CrossRefGoogle Scholar
  17. 17.
    Y. He, T. Day, T. Zhang, H. Liu, X. Shi, L. Chen, and G.J. Snyder, Adv. Mater. 26, 3974 (2014).CrossRefGoogle Scholar
  18. 18.
    D.P. Spitzer, J. Phys. Chem. Solids 31, 19 (1970).CrossRefGoogle Scholar
  19. 19.
    T. Gron, K. Barner, C. Kleeberg, and I. OkonskaKozlowska, Phys. B 225, 191 (1996).CrossRefGoogle Scholar
  20. 20.
    T. Gron, A. Krajewski, J. Kusz, E. Malicka, I. Okonska-Kozlowska, and A. Waskowska, Phys. Rev. B 71, 035208 (2005).CrossRefGoogle Scholar
  21. 21.
    K. Balcerek, C. Marucha, R. Wawryk, T. Tyc, N. Matsumoto, and S. Nagata, Philos. Mag. B 79, 1021 (1999).CrossRefGoogle Scholar
  22. 22.
    H. Duda, I. Jendrzejewska, T. Gron, S. Mazur, P. Zajdel, and A. Kita, J. Phys. Chem. Solids 68, 80 (2007).CrossRefGoogle Scholar
  23. 23.
    A.U. Khan, R.A.R.A. Orabi, A. Pakdel, J.B. Vaney, B. Fontaine, R. Gautier, J.F. Halet, S. Mitani, and T. Mori, Chem. Mater. 29, 2988 (2017).CrossRefGoogle Scholar
  24. 24.
    T. Oda, M. Shirai, N. Suzuki, and K. Motizuki, J. Phys.: Condens. Matter 7, 4433 (1995).Google Scholar
  25. 25.
    B. Li, F. Yuan, G. He, X. Han, X. Wang, J. Qin, Z.X. Guo, X. Lu, Q. Wang, and I.P. Parkin, Adv. Funct. Mater. 27, 1606218 (2017).CrossRefGoogle Scholar
  26. 26.
    X. Huang, G. Deng, L. Liao, W. Zhang, G. Guan, F. Zhou, Z. Xiao, R. Zou, Q. Wang, and J. Hu, Nanoscale 9, 2626 (2017).CrossRefGoogle Scholar
  27. 27.
    S. Cheng, T. Shi, C. Chen, Z. Yan, Y. Huang, X. Tao, J. Li, G. Liao, and Z. Tang, Sci. Rep. 7, 6681 (2017).CrossRefGoogle Scholar
  28. 28.
    F.J. Disalvo and J.V. Waszczak, Phys. Rev. B 26, 2501 (1982).CrossRefGoogle Scholar
  29. 29.
    N. Doebelin and R. Kleeberg, J. Appl. Crystallogr. 48, 1573 (2015).CrossRefGoogle Scholar
  30. 30.
    E. Riedel and E. Horvath, Mater. Res. Bull. 8, 973 (1973).CrossRefGoogle Scholar
  31. 31.
    A.N. Buckley, W.M. Skinner, S.L. Harmer, A. Pring, and L.J. Fan, Geochim. Cosmochim. Acta 73, 4452 (2009).CrossRefGoogle Scholar
  32. 32.
    A.M. Wiltrout, C.G. Read, E.M. Spencer, and R.E. Schaak, Inorg. Chem. 55, 221 (2015).CrossRefGoogle Scholar
  33. 33.
    R.J. Bouchard, P.A. Russo, and A. Wold, Inorg. Chem. 4, 685 (1965).CrossRefGoogle Scholar
  34. 34.
    D. Zhang, J.Y. Yang, Q.H. Jiang, Z.W. Zhou, X. Li, J.W. Xin, A. Basit, Y.Y. Ren, and X. He, Nano Energy 36, 156 (2017).CrossRefGoogle Scholar
  35. 35.
    G.J. Snyder, T. Caillat, and J.P. Fleurial, Mater. Res Innov. 5, 67 (2001).CrossRefGoogle Scholar
  36. 36.
    N. Tsujii and T. Mori, Appl. Phys. Express 6, 043001 (2013).CrossRefGoogle Scholar
  37. 37.
    R. Ang, A.U. Khan, N. Tsujii, K. Takai, R. Nakamura, and T. Mori, Angew. Chem., Int. Ed. 54, 12909 (2015).CrossRefGoogle Scholar
  38. 38.
    H. Takaki, K. Kobayashi, M. Shimono, N. Kobayashi, K. Hirose, N. Tsujii, and T. Mori, Mater. Today Phys. 3, 85 (2017).CrossRefGoogle Scholar
  39. 39.
    H. Wang, E. Schechtel, Y. Pei, and G.J. Snyder, Adv. Energy Mater. 3, 488 (2013).CrossRefGoogle Scholar
  40. 40.
    M. Beaumale, T. Barbier, Y. Breard, S. Hebert, Y. Kinemuchi, and E. Guilmeau, J. Appl. Phys. 115, 043704 (2014).CrossRefGoogle Scholar
  41. 41.
    X.X. Xu, H.W. Zhao, X.H. Hu, L. Pan, C.C. Chen, D.X. Li, and Y.F. Wang, J. Alloys Compd. 728, 701 (2017).CrossRefGoogle Scholar
  42. 42.
    W. Kim, J. Mater. Chem. C 3, 10336 (2015).CrossRefGoogle Scholar
  43. 43.
    E.S. Toberer, A.F. May, and G.J. Snyder, Chem. Mater. 22, 624 (2010).CrossRefGoogle Scholar
  44. 44.
    Y.L. Pei, C. Chang, Z. Wang, M.J. Yin, M.H. Wu, G.J. Tan, H.J. Wu, Y.X. Chen, L. Zheng, S.K. Gong, T.J. Zhu, X.B. Zhao, L. Huang, J.Q. He, M.G. Kanatzidis, and L.D. Zhao, J. Am. Chem. Soc. 138, 16364 (2016).CrossRefGoogle Scholar
  45. 45.
    D.S. Sanditov and V.N. Belomestnykh, Tech. Phys. 56, 1619 (2011).CrossRefGoogle Scholar
  46. 46.
    P. Qiu, T. Zhang, Y. Qiu, X. Shi, and L. Chen, Energy Environ. Sci. 7, 4000 (2014).CrossRefGoogle Scholar
  47. 47.
    X. Shen, C.C. Yang, Y. Liu, G. Wang, H. Tan, Y.H. Tung, G. Wang, X. Lu, J. He, X. Zhou, and A.C.S. Appl, Mater. Interfaces 11, 2168 (2019).CrossRefGoogle Scholar
  48. 48.
    D.T. Morelli, V. Jovovic, and J.P. Heremans, Phys. Rev. Lett. 101, 035901 (2008).CrossRefGoogle Scholar
  49. 49.
    T.M. Tritt, Thermal Conductivity: Theory, Properties, and Applications (New York: Springer, 2004), pp. 1–2.CrossRefGoogle Scholar
  50. 50.
    L.D. Zhao, S.H. Lo, Y.S. Zhang, H. Sun, G.J. Tan, C. Uher, C. Wolverton, V.P. Dravid, and M.G. Kanatzidis, Nature 508, 373 (2014).CrossRefGoogle Scholar
  51. 51.
    O. Delaire, J. Ma, K. Marty, A.F. May, M.A. Mcguire, M. Du, D.J. Singh, A. Podlesnyak, G. Ehlers, and M.D. Lumsden, Nat. Mater. 10, 614 (2011).CrossRefGoogle Scholar
  52. 52.
    X. Chen, H.D. Zhou, A. Kiswandhi, I. Miotkowski, Y.P. Chen, P.A. Sharma, A.L.L. Sharma, M.A. Hekmaty, D. Smirnov, and Z. Jiang, Appl. Phys. Lett. 99, 261912 (2011).CrossRefGoogle Scholar
  53. 53.
    X. Shi, L. Chen, and C. Uher, Int. Mater. Rev. 61, 379 (2016).CrossRefGoogle Scholar
  54. 54.
    W.G. Zeier, A. Zevalkink, Z.M. Gibbs, G. Hautier, M.G. Kanatzidis, and G.J. Snyder, Angew. Chem., Int. Ed. 55, 6826 (2016).CrossRefGoogle Scholar
  55. 55.
    D.G. Cahill, S.K. Watson, and R.O. Pohl, Phys. Rev. B: Condens. Matter 46, 6131 (1992).CrossRefGoogle Scholar
  56. 56.
    G.A. Slack, Solid State Phys. 34, 1 (1979).CrossRefGoogle Scholar
  57. 57.
    Y.F. Wang, K. Fujinami, R.Z. Zhang, C.L. Wan, N. Wang, Y.S. Ba, and K. Koumoto, Appl. Phys. Express 3, 031101 (2010).CrossRefGoogle Scholar
  58. 58.
    Eric J. Skoug, Jeffrey D. Cain, and Donald T. Morelli, J. Electron. Mater. 41, 1232 (2012).CrossRefGoogle Scholar
  59. 59.
    W. Yao, D. Yang, Y. Yan, K. Peng, H. Zhan, A. Liu, X. Lu, G. Wang, X. Zhou, and A.C.S. Appl, Mater. Interfaces 9, 10595 (2017).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Yudong Lang
    • 1
  • Lin Pan
    • 1
    • 2
  • Changchun Chen
    • 1
    • 2
  • Yifeng Wang
    • 1
    • 2
    Email author
  1. 1.College of Materials Science and EngineeringNanjing Tech UniversityNanjingChina
  2. 2.Jiangsu Collaborative Innovation Center for Advanced Inorganic Function CompositesNanjing Tech UniversityNanjingChina

Personalised recommendations