Analytical Modeling of Dual-Junction Tandem Solar Cells Based on an InGaP/GaAs Heterojunction Stacked on a Ge Substrate

  • F. BouzidEmail author
  • F. Pezzimenti
  • L. Dehimi
  • F. G. Della Corte
  • M. Hadjab
  • A. Hadj Larbi


An analytical model is used to describe the electrical characteristics of a dual-junction tandem solar cell performing with a conversion efficiency of 32.56% under air mass 1.5 global (AM1.5G) spectrum. The tandem structure consists of a thin heterojunction top cell made of indium gallium phosphide (InGaP) on gallium arsenide (GaAs), mechanically stacked on a relatively thick germanium (Ge) substrate, which acts as bottom cell. In order to obtain the best performance of such a structure, we simulate for both the upper and lower sub-cell the current density–voltage, power density–voltage, and spectral response behaviors, taking into account the doping-dependent transport parameters and a wide range of minority carrier surface recombination velocities. For the proposed tandem cell, our calculations predict optimal photovoltaic parameters, namely the short-circuit current density (Jsc), open-circuit voltage (Voc), maximum power density (Pmax), and fill factor (FF) are Jsc = 28.25 mA/cm2, Voc = 1.24 V, Pmax = 31.64 mW/cm2, and FF = 89.95%, respectively. The present study could prove useful in supporting the design of high efficiency dual junction structures by investigating the role of different materials and physical parameters.


Analytical modeling tandem solar cell spectral response conversion efficiency 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



  1. 1.
    M. Baba, K. Makita, H. Mizuno, H. Takato, T. Sugaya, and N. Yamada, Prog. Photovolt. Res. Appl. 25, 255 (2017).CrossRefGoogle Scholar
  2. 2.
    R.M. France, P. Espinet-Gonzalez, N.J. Ekins-Daukes, H. Guthrey, M.A. Steiner, and J.F. Geisz, IEEE J. Photovolt. 8, 1608 (2018).CrossRefGoogle Scholar
  3. 3.
    S. Essig, S. Ward, M.A. Steiner, D.J. Friedman, J.F. Geisz, P. Stradins, and D.L. Young, Energy Procedia 77, 464 (2015).CrossRefGoogle Scholar
  4. 4.
    M. Schnabel, M. Rienäcker, E.L. Warren, J.F. Geisz, R. Peibst, P. Stradins, and A.C. Tamboli, IEEE J. Photovolt. 8, 1584 (2018).CrossRefGoogle Scholar
  5. 5.
    D.J. Friedman, Curr. Opin. Solid State Mater. 14, 131 (2010).CrossRefGoogle Scholar
  6. 6.
    S. Yoshidomi, J. Furukawa, M. Hasumi, and T. Sameshima, Energy Procedia 60, 116 (2014).CrossRefGoogle Scholar
  7. 7.
    H. Bencherif, L. Dehimi, F. Pezzimenti, and F.G. Della Corte, Optik 182, 682 (2019).CrossRefGoogle Scholar
  8. 8.
    M.A. Green, K. Emery, Y. Hishikawa, W. Warta, E.D. Dunlop, D.H. Levi, and A.W.Y. Ho-Baillie, Prog. Photovolt. Res. Appl. 25, 3 (2017).CrossRefGoogle Scholar
  9. 9.
    B.M. Kayes, L. Zhang, R. Twist, I.-K. Ding, and G.S. Higashi, IEEE J. Photovolt. 4, 729 (2014).CrossRefGoogle Scholar
  10. 10.
    B. Kınacı, Y. Özen, T. Asar, S.Ş. Çetin, T. Memmedli, M. Kasap, and S. ÖzÇelik, J. Mater. Sci. Mater. Electron. 24, 3269 (2013).CrossRefGoogle Scholar
  11. 11.
    Y. Özen, N. Akın, B. Kınacı, and S. Özçelik, Sol. Energy Mater. Sol. C 137, 1 (2015).CrossRefGoogle Scholar
  12. 12.
    J.F. Geisz, M.A. Steiner, I. Garcia, S.R. Kurtz, and D.J. Friedman, Appl. Phys. Lett. 103, 041118 (2013).CrossRefGoogle Scholar
  13. 13.
    J.F. Wheelden, C.E. Valdivia, A.W. Walker, G. Kolhatkar, A. Jaouad, A. Turala, B. Riel, D. Masson, N. Puetz, S. Fafard, R. Ares, V. Aimez, T.J. Hall, and K. Hiazer, Prog. Photovolt. 19, 442 (2011).CrossRefGoogle Scholar
  14. 14.
    P.T. Chiu, D.C Law, R.L. Woo, S.B. Singer, D. Bhusari, W.D. Hong, A. Zakaria, J. Boisvert, S. Mesropian, R. R. King, and N. H. Karam, in IEEE 40th Photovoltaic Specialist Conference (PVSC) proceedings (2014), pp. 11–13.Google Scholar
  15. 15.
    J.W. Leem, Y.T. Lee, and J.S. Yu, Opt. Quantum Electron. 41, 605 (2009).CrossRefGoogle Scholar
  16. 16.
    S. Sato, H. Miyamoto, M. Imaizumi, K. Shimazaki, C. Morioka, K. Kawano, and T. Ohshima, Sol. Energy Mater. Sol. Cells 93, 768 (2009).CrossRefGoogle Scholar
  17. 17.
    R.R. King, D.C. Law, K.M. Edmondson, C.M. Fetzer, G.S. Kinsey, H. Yoon, R.A. Sherif, and N.H. Karam, Appl. Phys. Lett. 90, 183516 (2007).CrossRefGoogle Scholar
  18. 18.
    M. Lu, R. Wang, Y. Liu, Z. Feng, Z. Han, and C. Hou, Nucl. Instrum. Methods Phys. Res. B 307, 362 (2013).CrossRefGoogle Scholar
  19. 19.
    M.A. Green, M.J. Keevers, I. Thomas, J.B. Lasich, K. Emery, and R.R. King, Prog. Photovolt. Res. Appl. 23, 685 (2015).CrossRefGoogle Scholar
  20. 20.
    T. Sameshima, J. Takenezawa, M. Hasumi, T. Koida, T. Kaneko, M. Karasawa, and M. Kondo, Jpn. J. Appl. Phys. 50, 052301 (2011).CrossRefGoogle Scholar
  21. 21.
    L. Zhao, G. Flamand, and J. Poortmans, in AIP Conference Proceedings of CPV-6 International Conference on Concentrating Photovoltaic System (2010), pp. 284–289.Google Scholar
  22. 22.
    T.P. White, N.N. Lal, and K.R. Catchpole, IEEE J. Photovolt. 4, 1 (2014).CrossRefGoogle Scholar
  23. 23.
    I. Mathews, D. O’Mahony, B. Corbett, and A.P. Morrison, Opt. Express 20, A754 (2012).CrossRefGoogle Scholar
  24. 24.
    S.M. Sze and K.K. Ng, Physics of Semiconductor Devices, 3rd ed. (New York: Wiley, 2006), p. 790.CrossRefGoogle Scholar
  25. 25.
    K. Zeghdar, L. Dehimi, F. Pezzimenti, S. Rao, and F.G. Della Corte, Jpn. J. Appl. Phys. 58, 014002 (2019).CrossRefGoogle Scholar
  26. 26.
    F.G. Della Corte, F. Pezzimenti, S. Bellone, and R. Nipoti, Mater. Sci. Forum 679, 621 (2011).CrossRefGoogle Scholar
  27. 27.
    F. Pezzimenti, IEEE Trans. Electron. Dev. 60, 1404 (2013).CrossRefGoogle Scholar
  28. 28.
    M.Y. Ghannam, A.S. AlOmar, N. Posthuma, G. Flammand, and J. Poortmans, Kuwait J. Sci. Eng. 3, 203 (2004).Google Scholar
  29. 29.
    S.C. Jain and D.J. Roulston, Solid State Electron. 34, 453 (1991).CrossRefGoogle Scholar
  30. 30.
    A.W. Haas, J.R. Wilcox, J.L. Gray, and R.J. Schwartz, J. Photon. Energy 1, 018001 (2011).CrossRefGoogle Scholar
  31. 31.
    M.L. Megherbi, F. Pezzimenti, L. Dehimi, M.A. Saadoune, and F.G. Della Corte, IEEE Trans. Electron. Dev. 65, 3371 (2018).CrossRefGoogle Scholar
  32. 32.
    F. Pezzimenti and F. G. Della Corte, in Mediterranean Electrotechnical Conference ProceedingsMELECON (2010), pp. 1129–1134.Google Scholar
  33. 33.
    M.L. Megherbi, F. Pezzimenti, L. Dehimi, A. Saadoune, and F.G. Della Corte, J. Electron. Mater. 47, 1414 (2018).CrossRefGoogle Scholar
  34. 34.
    M. Sotoodeh, A.H. Khalid, and A.A. Rezazadeh, J. Appl. Phys. 87, 2890 (2000).CrossRefGoogle Scholar
  35. 35.
    D.B.M. Klaassen, Solid State Electron. 35, 961 (1992).CrossRefGoogle Scholar
  36. 36.
    P.T. Landsberg and G.S. Kousik, J. Appl. Phys. 56, 1696 (1984).CrossRefGoogle Scholar
  37. 37.
    F. Bouzid and N. Benaziez, Int. J. Renew. Energy Res. 4, 759 (2014).Google Scholar
  38. 38.
    G. De Martino, F. Pezzimenti, F.G. Della Corte, G. Adinolfi, and G. Graditi, in IEEE Proceedings of International Conference Ph. D. Research in Microelectronics and ElectronicsPRIME (2017), pp. 221–224.Google Scholar
  39. 39.
    F. Bouzid, L. Dehimi, and F. Pezzimenti, J. Electron. Mater. 46, 6563 (2017).CrossRefGoogle Scholar
  40. 40.
    Y. Marouf, L. Dehimi, F. Bouzid, F. Pezzimenti, and F.G. Della Corte, Optik 163, 22 (2018).CrossRefGoogle Scholar
  41. 41.
    F. Bouzid, F. Pezzimenti, L. Dehimi, M.L. Megherbi, and F.G. Della Corte, Jpn. J. Appl. Phys. 56, 094301 (2017).CrossRefGoogle Scholar
  42. 42.
    F.G. Della Corte, G. De Martino, F. Pezzimenti, G. Adinolfi, and G. Graditi, IEEE Trans Electron. Dev. 68, 3352 (2018).CrossRefGoogle Scholar
  43. 43.
    F. Bouzid, L. Dehimi, F. Pezzimenti, M. Hadjab, and A.H. Larbi, Superlattice Microstruct. 122, 57 (2018).CrossRefGoogle Scholar
  44. 44.
    S.R. Kurtz, J.M. Olson, D.J. Friedman, J.F. Geisz, K.A. Bertness, and A.E. Kibbler, in Compound Semiconductor Surface Passivation and Novel Device, MRS Proceedings (1999), pp. 1–15.Google Scholar
  45. 45.
    A.S. Gudovskikh, K.S. Zelentsov, N.A. Kalyuzhnyy, V.M. Lantratov, S.A. Mintairov, and J.P. Kleider, Energy Procedia 3, 76 (2011).CrossRefGoogle Scholar
  46. 46.
    T. Wilson, T. Thomas, M. Führer, N.J. Ekins-Daukes, R. Roucka, A. Clark, A. Johnson, R. Hoffman Jr., and D. Begarney, in AIP Conference Proceedings of CPV-12 International Conference on Concentrating Photovoltaic System (2016), pp. 1–6.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Thin Films Development and Applications Unit UDCMASetif/Research Center in Industrial Technologies CRTICheraga, AlgiersAlgeria
  2. 2.DIIES – Mediterranea University of Reggio CalabriaReggio CalabriaItaly
  3. 3.Faculty of ScienceUniversity of BatnaBatnaAlgeria

Personalised recommendations