Advertisement

FeS Nanospheres/Fe/Hard Carbon Mesoporous Sheet Nanocomposites from Sulfate Pulping Red Liquor for Cheap Li-ion Batteries

  • Pengkun Shang
  • Wen HeEmail author
  • Xudong ZhangEmail author
  • Guihua Yang
  • Guogang Xu
  • Chunlian Wang
  • Xinli Yi
Article
  • 2 Downloads

Abstract

Controllable synthesis of FeS nanoparticles with high electrochemical performance is still a challenge for cheap Li-ion batteries. In this paper, FeS nanospheres/Fe/hard carbon mesoporous sheet (FeSNs-Fe/HCMS) nanocomposites are synthesized by using sulfate pulping red liquor (SPRL) as a multifunctional template. In the nanocomposite, FeS nanospheres (20–50 nm) are homogeneously embedded in Fe/hard carbon mesoporous sheets. The heterogeneous nucleation and confined growth mechanisms of FeS nanospheres are established. The synthesis mechanism and electrochemical reactions of FeSNs-Fe/HCMS nanocomposites are proposed. The influences of the additive amount of sulfate pulping red liquor on the structure and electrochemical performance of FeSNs-Fe/HCMS nanocomposites are investigated. The results of electrochemical investigation show that this nanocomposite anode exhibits a high initial discharge capacity of 1182 mAh g−1 at a current density of 1 A g−1, which is far beyond the theoretical specific capacity of FeS (609 mAh g−1). Even after cycling at 1 A g−1 over 100 cycles, this anode still retains a high discharge specific capacity of 881 mAh g−1. This work not only reduces pollution of sulfate pulping red liquor, but also benefits the utilization of waste, which proves that sulfate pulping red liquor has good application prospects in Li-ion batteries.

Keywords

FeS nanosphere Fe/hard carbon mesoporous sheet nanocomposite sulfate pulping red liquor anode 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

The author thanks National Natural Science Foundation of China (Grant Nos. 51672139, 51472127 and 51272144) for the financial support. They also thank the Key Laboratory of Pulp and Paper Science and Technology of Ministry of Education for the financial support (No. KF2016-01).

Conflict of interest

All authors declare that they do not have any conflict of interest.

References

  1. 1.
    Z.J. Cao, H.H. Song, B. Cao, J. Ma, X.H. Chen, J.S. Zhou, and Z.K. Ma, J. Power Sources 364, 208 (2017).CrossRefGoogle Scholar
  2. 2.
    X. Yao, Y. Hu, and Z. Su, Chem. Pap. 72, 2465 (2017).CrossRefGoogle Scholar
  3. 3.
    M.R. Sovizi and A.R. Madram, Chem. Pap. 71, 21 (2017).CrossRefGoogle Scholar
  4. 4.
    Y.X. Xu, W.Y. Li, F. Zhang, X.L. Zhang, W.J. Zhang, C.S. Lee, and Y.B. Tang, J. Mater. Chem. A 4, 3697 (2016).CrossRefGoogle Scholar
  5. 5.
    M. Faridi, L. Naji, S. Kazemifard, and N. Pourali, Chem. Pap. 72, 2289 (2018).CrossRefGoogle Scholar
  6. 6.
    J.M. Costa, T.C.M. Nepel, and A.F.A. Neto, Chem. Pap. (2018).  https://doi.org/10.1007/s11696-018-0661-x
  7. 7.
    X.Q. Guo, X.F. Liu, H.L. Yu, Y.C. Lu, Q.C. Liu, and Z.J. Li, J. Electron. Mater. 48, 551 (2019).CrossRefGoogle Scholar
  8. 8.
    M.C. Thirumoolam, A.K. Mamikandan, B. Sivaramakrishnan, H. Kaluvan, and M.R. Gowravaram, J. Electron. Mater. 47, 1952 (2018).CrossRefGoogle Scholar
  9. 9.
    L. Fei, Q.L. Lin, B. Yuan, G. Chen, P. Xie, Y.L. Li, Y. Xu, S.G. Deng, S. Smirnov, and H.M. Luo, ACS Appl. Mater. Interfaces 5, 5330 (2013).CrossRefGoogle Scholar
  10. 10.
    N. Yan, L. Hu, Y. Li, Y. Wang, H. Zhong, X.Y. Hu, X.K. Kong, and Q.W. Chen, J. Phys. Chem. C 116, 7227 (2012).CrossRefGoogle Scholar
  11. 11.
    B. Mordina, R. Kumar, R.K. Tiwari, D.K. Setua, and A. Sharma, J. Phys. Chem. C 121, 7810 (2017).CrossRefGoogle Scholar
  12. 12.
    T.X.H. Le, M. Bechelany, and M. Cretin, Carbon 122, 564 (2017).CrossRefGoogle Scholar
  13. 13.
    X.G. Liu, S.W. Or, C.G. Jin, Y.H. Lv, C. Feng, and Y.P. Sun, Carbon 60, 215 (2013).CrossRefGoogle Scholar
  14. 14.
    S. Nam, S. Kim, S. Wia, H. Choi, S. Byun, S.M. Choi, S.I. Yoo, K.T. Lee, and B. Parka, J. Power Sources 211, 154 (2012).CrossRefGoogle Scholar
  15. 15.
    L. Ghadbeigi, J.K. Harada, B.R. Lettiere, and T.D. Sparks, Energy Environ. Sci. 8, 1640 (2015).CrossRefGoogle Scholar
  16. 16.
    W.Y. Li, Y.B. Tang, W.P. Kang, Z.Y. Zhang, X. Yang, Y. Zhu, W.J. Zhang, and C.S. Lee, Small 11, 1345 (2015).CrossRefGoogle Scholar
  17. 17.
    W.Y. Li, Z.P. Li, W.P. Kang, Y.B. Tang, Z.Y. Zhang, X. Yang, H.T. Hong, and C.S. Lee, J. Mater. Chem. A 2, 12289 (2014).CrossRefGoogle Scholar
  18. 18.
    Q.T. Xu, J.C. Li, H.G. Xue, and S.P. Guo, J. Power Sources 379, 41 (2018)Google Scholar
  19. 19.
    C.B. Zhu, Y.R. Wen, PAV. Aken, J. Maier, and Y. Yu, Adv. Funct. Mater. 25, 2335 (2015)Google Scholar
  20. 20.
    S.P. Guo, J.C. Li, J.R. Xiao, and H.G. Xue ACS Appl. Mater. Interfaces 9, 37694 (2017).CrossRefGoogle Scholar
  21. 21.
    X. Wen, X.L. Wei, L.W. Yang, and P.K. Shen, J. Mater. Chem. A 3, 2090 (2015).CrossRefGoogle Scholar
  22. 22.
    H.T. Xue, D.Y.W. Yu, J. Qing, X. Yang, J. Xu, Z.P. Li, M.L. Sun, W.P. Kang, Y.B. Tang, and C.S. Lee, J. Mater. Chem. A 3, 7945 (2015).CrossRefGoogle Scholar
  23. 23.
    B. Wu, H.H. Song, J.S. Zhou, and X.H. Chen, Chem. Commun. 47, 8653 (2011).CrossRefGoogle Scholar
  24. 24.
    C. Xu, Y. Zeng, X.H. Rui, N. Xiao, J.X. Zhu, W.Y. Zhang, J. Chen, W.L. Liu, H.T. Tan, H.H. Hng, and Q.Y. Yan, ACS Nano 6, 4713 (2012).CrossRefGoogle Scholar
  25. 25.
    S.P. Guo, J.C. Li, Z. Ma, Y. Chi, and H.G. Xue, J. Mater. Sci. 52, 2345 (2017).CrossRefGoogle Scholar
  26. 26.
    X. Wei, W.H. Li, J. Shi, L. Gu, and Y. Yu, ACS Appl. Mater. Interfaces 7, 27804 (2015).CrossRefGoogle Scholar
  27. 27.
    X.G. Liu, Y.Y. Wu, X.L. Li, J.Y. Yu, and Y.P. Sun, Ceram. Int. 44, 13654 (2018).CrossRefGoogle Scholar
  28. 28.
    X.L. Yi, W. He, X.D. Zhang, G.H. Yang, and Y.Y. Wang, J. Alloy. Compd. 735, 1306 (2018).CrossRefGoogle Scholar
  29. 29.
    J. Sun, H.W. Lee, M. Pasta, H.T. Yuan, G.Y. Zheng, Y.M. Sun, Y.Z. Li, and Y. Cui, Nat. Nanotechnol. 10, 980 (2015).CrossRefGoogle Scholar
  30. 30.
    W.L. Lu, H.Y. Nan, J.H. Hong, Y.M. Chen, C. Zhu, Z. Liang, X.Y. Ma, Z.H. Ni, C.H. Jin, and Z. Zhang, Nano Res. 7, 853 (2014).CrossRefGoogle Scholar
  31. 31.
    C.L. Wang, Y. Zhang, W. He, X.D. Zhang, G.H. Yang, Z.Y. Wang, M.M. Ren, and L.Z. Wang, Chem. Electro. Chem 5, 129 (2018).CrossRefGoogle Scholar
  32. 32.
    Y. Xiang, Z. Chen, C.M. Chen, T.H. Wang, and M. Zhang, J. Alloy. Compd. 724, 406 (2017).CrossRefGoogle Scholar
  33. 33.
    X.D. Zhang, X.L. Xu, W. He, G.H. Yang, J.X. Shen, J.H. Liu, and Q.Z. Liu, J. Mater. Chem. A 3, 22247 (2015).CrossRefGoogle Scholar
  34. 34.
    Y.X. Ding, X.Y. Sun, L.Y. Zhang, S.J. Mao, Z.L. Xie, Z.W. Liu, and D.S. Su, Angew. Chem. Int. Ed. 54, 231 (2015).CrossRefGoogle Scholar
  35. 35.
    G.C. Huang, T. Chen, Z. Wang, K. Chang, and W.X. Chen, J. Power Sources 235, 122 (2013).CrossRefGoogle Scholar
  36. 36.
    J.Y. Yao, Y.J. Gong, S.B. Yang, P. Xiao, Y.H. Zhang, K. Keyshar, G.L. Ye, S. Ozden, R. Vajtai, and P.M. Ajayan, ACS Appl. Mater. Interfaces 6, 20414 (2014).CrossRefGoogle Scholar
  37. 37.
    H.T. Sun, G.Q, Xin, T. Hu, M.P. Yu, D.L. Shao, X. Sun, and J. Lian, Nat. Commun. 5, 4526 (2014)Google Scholar
  38. 38.
    S.H. Choi and Y.C. Kang, Nano Res 8, 1595 (2015).CrossRefGoogle Scholar
  39. 39.
    L. Li, C.T. Gao, A. Kovalchuk, Z.W. Peng, G.D. Ruan, Y. Yang, H.L. Fei, Q.F. Zhong, Y.L. Li, and J.M. Tour, Nano Res. 9, 2904 (2016).CrossRefGoogle Scholar
  40. 40.
    J.S. Cho, J.S. Park, and Y.C. Kang, Nano Res. 10, 897 (2017).CrossRefGoogle Scholar
  41. 41.
    J.B. Li, D. Yan, T. Lu, Y.F. Yao, and L.K. Pan, Chem. Eng. J. 325, 14 (2017).CrossRefGoogle Scholar
  42. 42.
    W.J. Yu, C. Liu, L.L. Zhang, P.X. Hou, F. Li, B. Zhang, and H.M. Cheng, Adv. Sci. 3, 1600113 (2016).CrossRefGoogle Scholar
  43. 43.
    S.Y. Lee and Y.C. Kang, Chem. Eur. J. 22, 2769 (2016).CrossRefGoogle Scholar
  44. 44.
    Z.G. Wu, J.T. Li, Y.J. Zhong, J. Liu, K. Wang, X.D. Guo, L. Huang, B.H. Zhong, and S.G. Sun, J. Alloy. Compd. 688, 790 (2016).CrossRefGoogle Scholar
  45. 45.
    C. Li, X. Wang, S.D. Li, Q. Li, J. Xu, X.M. Liu, C.K. Liu, Y.H. Xu, J.Q. Liu, H.L, Li, P.Z. Guo, and X.S. Zhao, Appl. Surf. Sci. 416, 308 (2017)Google Scholar
  46. 46.
    L. Li, A.R.O. Raji, and J.M. Tour, Adv. Mater. 25, 6298 (2013).CrossRefGoogle Scholar
  47. 47.
    Z.Y. Wang, W. He, X.H. Zhang, Y.Z. Yue, G.H. Yang, X.L. Yi, Y.Y. Wang, and J.C. Wang, Chem. Electro. Chem. 4, 671 (2017).Google Scholar
  48. 48.
    L. Fei, B.P. Williams, S.H. Yoo, J.M. Carlin, and Y.L. Joo, Chem. Commun. 52, 1501 (2016).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.College of Material Science and Engineering, Qilu University of Techenology (Shandong Academy of Sciences)JinanChina
  2. 2.Key Laboratory of Pulp and Paper Science and Technology of Ministry of EducationQilu University of Technology (Shandong Academy of Sciences)JinanChina
  3. 3.College of Material Science and Engineering, Shandong University of Science and TechnologyQingdaoChina

Personalised recommendations