Advertisement

Preparation of Eu-Doped Cu2O Thin Films Using Different Concentrations by SILAR and Their Heterojunction Property with ZnO

  • N. Soundaram
  • R. Chandramohan
  • R. David Prabu
  • S. ValanarasuEmail author
  • K. Jeyadheepan
  • A. Kathalingam
  • Mohamed S. Hamdy
  • Abdullah M. Alhanash
  • K. S. Al-Namshah
Article
  • 10 Downloads

Abstract

Europium-doped Cu2O thin films were prepared by simple successive ionic layer adsorption and reaction (SILAR) with different Eu doping concentrations: 1%, 3% and 5%. The effect of doping level on structural, optical, surface morphological and electrical properties of the films were studied by x-ray diffraction analysis, UV–Vis spectroscopy, scanning electron microscopy and Hall effect measurements, respectively. Crystallite size, dislocation density, microstrain and texture coefficient of the films were estimated using x-ray diffraction data. The crystallite size was found to vary between 27 nm and 21 nm for the change of doping percentage 1–5%. Morphology of Eu:Cu2O and ZnO films had cauliflower and hexagonal shapes, respectively, without any cracks. Optical studies done on the films revealed an increase of band gap as 2.08 eV, 2.26 eV and 2.41 eV for Eu doping concentrations of 1%, 3% and 5%, respectively. The ZnO film showed a maximum of 80% transmittance and band gap of 3.20 eV. Photoluminescence (PL) studies revealed two emission peaks centered at 394 nm and 377 nm for the Eu:Cu2O and ZnO films, respectively. Eu:Cu2O/ZnO heterojunction solar cells were also prepared and their properties studied; they were found to show increased open circuit voltage and short circuit current for 5% Eu doping concentration.

Keywords

Eu-doped Cu2ZnO heterostructure solar cell efficiency SILAR 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

References

  1. 1.
    L. Colsen, F.W. Addis, and W. Miller, Sol. Cells. 7, 247 (1982).CrossRefGoogle Scholar
  2. 2.
    K.P. Musselman, A. Wisnet, D.C. Iza, H.C. Hesse, C. Scheu, J.L. MacManus-Discoll, and L. Schmidt-Mende, Adv. Mater. 22, E254 (2010).CrossRefGoogle Scholar
  3. 3.
    H. Tanaka, T. Shimakawa, T. Miyata, H. Sato, and T. Minami, Appl. Surf. Sci. 244, 568 (2005).CrossRefGoogle Scholar
  4. 4.
    J.J. Loferski, J. Appl. Phys. 27, 777 (1956).CrossRefGoogle Scholar
  5. 5.
    K. Kardarian, D. Nunes, P.M. Sberna, A. Ginsburg, D.A. Keller, J.V. Pinto, J. Deuermeier, A.Y. Anderson, A. Zaban, R. Martins, and E. Fortunato, Sol. Energy Mater. Sol. Cells 147, 27 (2016).CrossRefGoogle Scholar
  6. 6.
    S.H. Wee, P.S. Huang, J.K. Lee, and A. Goyal, Sci. Rep. 5, 16272 (2015).CrossRefGoogle Scholar
  7. 7.
    D.C. Perng, M.H. Hong, K.H. Chen, and K.H. Chen, J. Alloys Compon. 695, 549 (2017).CrossRefGoogle Scholar
  8. 8.
    M.A. Ellah, J.P. Thomas, L. Zhang, and K.T. Leung, Sol. Energy Mater. Sol. Cells 152, 87 (2016).CrossRefGoogle Scholar
  9. 9.
    K. Akimoto, S. Ishizuka, M. Yanagita, Y. Nawa, G.K. Paul, and T. Sakurai, Sol. Energy 80, 715 (2006).CrossRefGoogle Scholar
  10. 10.
    N.G. Elfadill, M.R. Hashim, K.M. Chahrour, and S.A. Mohammed, Semicond. Sci. Technol. 31, 065001 (2016).CrossRefGoogle Scholar
  11. 11.
    X. Yu, X. Li, G. Zheng, Y. Wei, A. Zhang, and B. Yao, Appl. Surf. Sci. 270, 340 (2013).CrossRefGoogle Scholar
  12. 12.
    Y.S. Lee, J. Heo, M.T. Winkler, S.C. Siah, S.B. Kim, R.G. Gordon, and T. Buonassisi, J. Mater. Chem. 1, 15416 (2013).CrossRefGoogle Scholar
  13. 13.
    L. Yu, L. Xiong, and Y. Yu, J. Phys. Chem. C 119, 22803 (2015).Google Scholar
  14. 14.
    N. Chander, A.F. Khan, and V.K. Komarala, RSC Adv. 5, 66057 (2015).CrossRefGoogle Scholar
  15. 15.
    M.A. Hernandez-Rodríguez, M.H. Imanieh, L.L. Martín, and I.R. Martín, Sol. Energy Mater. Sol. Cells 116, 171 (2013).CrossRefGoogle Scholar
  16. 16.
    K. Miura, T. Suzuki, and O. Hanaizumi, J. Mater. Sci. Chem. Eng. 3, 30 (2015).Google Scholar
  17. 17.
    W.J. Ho, G.C. Yang, Y.T. Shen, and Y.J. Deng, Appl. Surf. Sci. 365, 120 (2016).CrossRefGoogle Scholar
  18. 18.
    J. Wu, J. Wang, J. Lin, Y. Xiao, G. Yue, M. Huang, Z. Lan, Y. Huang, L. Fan, S. Yin, and T. Sato, Sci. Rep. 3, 2058 (2013).CrossRefGoogle Scholar
  19. 19.
    R. Javadi and B.D. Choi, J. Nanosci. Nanotech. 16, 8607 (2016).CrossRefGoogle Scholar
  20. 20.
    M.R. Johan, M.S.M. Suan, N.L. Hawari, and H.A. Ching, Int. J. Electrochem. Sci. 6, 6094 (2011).Google Scholar
  21. 21.
    S.S. Nikam, M.P. Suryawanshi, S.M. Bhosale, M.A. Gaikwad, P.A. Shinde, and A.V. Moholkar, J. Mater. Sci.: Mater. Electron. 27, 1897 (2016).Google Scholar
  22. 22.
    M. Pal, U. Pal, J.M.G.Y. Jiménez, and F.P. Rodríguez, Nanoscale Res. Lett. 7, 1 (2012).CrossRefGoogle Scholar
  23. 23.
    P.H. Klug and L.E. Alexander, X-ray diffraction procedure (New York: Wiley, 1954).Google Scholar
  24. 24.
    K.D.A. Kumar, S. Valanarasu, S.R. Rosario, V. Ganesh, M. Shkir, C.J. Sreelatha, and S. AlFaify, Solid State Sci. 78, 58 (2018).CrossRefGoogle Scholar
  25. 25.
    M.A. Rafa and N. Rousdy, Philos. Mag. Lett. 90, 113 (2010).CrossRefGoogle Scholar
  26. 26.
    M. Devika, N.K. Reddy, K. Ramesh, V. Ganesan, E.S.R. Gopal, and K.T. Ramakrishna Reddy, Appl. Surf. Sci. 253, 1673 (2006).CrossRefGoogle Scholar
  27. 27.
    S.S. Oluyamo, M.S. Nyagba, and A.S. Ojo, IOSR J. Appl. Phys. 6, 102 (2014).CrossRefGoogle Scholar
  28. 28.
    A.N. Banerjee, R. Maity, and K.K. Chattopadhyay, Mater. Lett. 58, 10 (2003).CrossRefGoogle Scholar
  29. 29.
    N.S. Narayanan and N.K. Deepak, Pramana. J. Phys. 87, 87 (2016).CrossRefGoogle Scholar
  30. 30.
    D. Sumangala, D. Amma, V.K. Vaidyan, and P.K. Manoj, Mater. Chem. Phys. 93, 194 (2005).CrossRefGoogle Scholar
  31. 31.
    C. Vijayan, M. Pandiaraman, N. Soundararajan, R. Chandramohan, V. Dhanasekaran, K. Sundaram, T. Mahalingam, and J. Peter, J. Mater. Sci.: Mater. Electron. 22, 545 (2011).Google Scholar
  32. 32.
    K.D.A. Kumar, V. Ganesh, M. Shkir, S. AlFaify, and S. Valanarasu, J. Mater. Sci.: Mater. Electron. 29, 887 (2018).Google Scholar
  33. 33.
    S.V. Gastev, A.A. Kaplyanskii, and N.S. Sokolov, Solid State Commun. 42, 389 (1982).CrossRefGoogle Scholar
  34. 34.
    T. Ito and T. Masumi, J. Phys. Soc. Jpn. 66, 2185 (1997).CrossRefGoogle Scholar
  35. 35.
    K.D.A. Kumar, S. Valanarasu, A. Kathalingam, V. Ganesh, M. Shkir, and S. AlFaify, Appl. Phys. A 123, 801 (2017).CrossRefGoogle Scholar
  36. 36.
    D.J. Edison, W. Nirmala, K.D.A. Kumar, S. Valanarasu, V. Ganesh, M. Shkir, and S. AlFaify, Phys. B 523, 31 (2017).CrossRefGoogle Scholar
  37. 37.
    M. Rasadujjaman, M. Shahjahan, M.K.R. Khan, and M.M. Rahman, SUST J. Sci. Technol. 20, 1 (2012).Google Scholar
  38. 38.
    J. Cui, J. Phys. Chem. C 114, 6408 (2010).CrossRefGoogle Scholar
  39. 39.
    S. Jung, S. Ahn, J. Yun, J. Gwak, D. Kim, and K. Yoon, Curr. Appl. Phys. 10, 990 (2010).CrossRefGoogle Scholar
  40. 40.
    J. Katayama, K. Ito, M. Matsuoka, and J. Tamaki, J. Appl. Electrochem. 34, 687 (2004).CrossRefGoogle Scholar
  41. 41.
    S. Shyamal, P. Hajra, H. Mandal, A. Bera, D. Sariket, A.K. Satpati, M.V. Malashchonak, A.V. Mazanik, O.V. Korolik, A.I. Kulak, E.V. Skorb, A. Maity, E.A. Streltsov, and C. Bhattacharya, Chem. Eng. J. 335, 676 (2018).CrossRefGoogle Scholar
  42. 42.
    N.H. Ke, P.T.K. Loan, D.A. Tuan, H.T. Dat, C.V. Tran, and L.Y.T. Hung, J. Photochem. Photobiol. A Chem. 349, 100 (2017).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • N. Soundaram
    • 1
  • R. Chandramohan
    • 1
  • R. David Prabu
    • 2
  • S. Valanarasu
    • 3
    Email author
  • K. Jeyadheepan
    • 4
  • A. Kathalingam
    • 5
  • Mohamed S. Hamdy
    • 6
  • Abdullah M. Alhanash
    • 6
  • K. S. Al-Namshah
    • 6
  1. 1.Department of PhysicsSree Sevugan Annamalai CollegeDevakottaiIndia
  2. 2.Department of PhysicsLoyola College of Arts and ScienceOilpatti, Mettala, Namakkal (Dt)India
  3. 3.PG and Research Department of PhysicsArul Anandar CollegeKarumathur, MaduraiIndia
  4. 4.Multifunctional Materials and Devices Lab, Anusandhan Kendra – II, School of EEESASTRA UniversityTirumalaisamudram, ThanjavurIndia
  5. 5.Millimeter-Wave Innovation Technology Research Center (MINT)Dongguk University-SeoulSeoulRepublic of Korea
  6. 6.Chemistry Department, College of ScienceKing Khalid UniversityAbhaSaudi Arabia

Personalised recommendations