Size-Independent Unipolar and Bipolar Resistive Switching Behaviors in ZnO Nanowires

  • Oradee Srikimkaew
  • Sartanee Suebka
  • Panithan Sriborriboon
  • Narathon Khemasiri
  • Panita Kasamechonchung
  • Annop Klamchuen
  • Worasom KundhikanjanaEmail author


In this work, we report on the mixed bipolar and unipolar resistive switching behavior in ZnO nanowires observed through conductive atomic force microscopy measurements on an individual nanowire. Both bipolar and unipolar resistive switching in ZnO nanowires are size-independent, suggesting that the switching is due to conductive filaments with dimensions much smaller than the cross-section of the nanowire. During bipolar resistive switching, both the low resistance and the high resistance states exhibit ohmic conduction at low voltage, consistent with the filament-based model. During unipolar switching, the low-resistance state is a mix of defect-free ohmic conduction and defect-dominated space-charge-limited conduction, which may not be observed in larger devices. Defects also influence transport in the high resistance state, which exhibits trap-controlled space-charge-limited conduction. Our results clearly demonstrate the key role of defects on the resistive switching behavior of ZnO-nanowires, an important consideration for optimizing the material for nonvolatile memory applications.


Non-volatile memory resistive switching conductive atomic force microscopy zinc oxide zinc oxide nanowires 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors wish to thank the Development and Promotion of Science and Technology Talents Project Scholarship Program, Thailand, Center for Scientific and Technological Equipment (CSTE), Suranaree University of Technology (SUT), and Dr. Michael F. Smith. This project is supported by the Thailand Research Fund (TRF) (Contract No. TRG5880060), Suranaree University of Technology (SUT), and (Contract Nos. SUT1-105-59-12-11 and SUT1-105-58-12-22), NANOTEC-SUT Center of Excellence on Advanced Functional Nanomaterials, and the Office of the Higher Education Commission under the National Research University (NRU) project. This work was partially supported by Research and Development of White Light Emitting Diode based on Zinc Oxide Optoelectronics Material; Phase-1: Method of ZnO- Substrate Fabrication Project (P1450015) from the National Science and Technology Development Agency, Thailand.


  1. 1.
    D.B. Strukov, G.S. Snider, D.R. Stewart, and R.S. Williams, Nature 453, 80 (2008).CrossRefGoogle Scholar
  2. 2.
    K.M. Kim, D.S. Jeong, and C.S. Hwang, Nat. Nanotechnol. 22, 254002 (2011).CrossRefGoogle Scholar
  3. 3.
    R. Waser and M. Aono, Nat. Mater. 6, 833 (2007).CrossRefGoogle Scholar
  4. 4.
    A. Sawa, Mater. Today 11, 28 (2008).CrossRefGoogle Scholar
  5. 5.
    F.M. Simanjuntak, D. Panda, K. Wei, and T. Tseng, Nanoscale Res. Lett. 11, 368 (2016).CrossRefGoogle Scholar
  6. 6.
    M. Laurenti, S. Porro, C.F. Pirri, C. Ricciardi, and A. Chiolerio, Crit. Rev. Solid State Mater. Sci. 42, 153 (2017).CrossRefGoogle Scholar
  7. 7.
    P. Kasamechonchung, M. Horprathum, K. Boonpavanitchakul, N. Supaka, P. Prompinit, W. Kangwansupamonkon, A. Somboonkaew, J. Wetcharungsri, S. Pratontep, S. Porntheeraphat, and A. Klamchuen, Phys. Status Solidi 212, 394 (2015).CrossRefGoogle Scholar
  8. 8.
    D. Panda and T.Y. Tseng, J. Mater. Sci. 48, 6849 (2013).CrossRefGoogle Scholar
  9. 9.
    W.-Y. Chang, Y.-C. Lai, T.-B. Wu, S.-F. Wang, F. Chen, and M.-J. Tsai, Appl. Phys. Lett. 92, 022110 (2008).CrossRefGoogle Scholar
  10. 10.
    S. Lee, H. Kim, D.-J. Yun, S.-W. Rhee, and K. Yong, Appl. Phys. Lett. 95, 262113 (2009).CrossRefGoogle Scholar
  11. 11.
    H.L. Ma, Z.Q. Wang, H.Y. Xu, L. Zhang, X.N. Zhao, M.S. Han, J.G. Ma, and Y.C. Liu, Chin. Phys. B 25, 127303 (2016).CrossRefGoogle Scholar
  12. 12.
    C.H. Huang, J.S. Huang, C.C. Lai, H.W. Huang, S.J. Lin, and Y.L. Chueh, ACS Appl. Mater. Interfaces. 5, 6017 (2013).CrossRefGoogle Scholar
  13. 13.
    C. Peng, C. Wang, T. Chan, W. Chang, Y. Wang, H. Tsai, W. Wu, L. Chen, and Y. Chueh, Nanoscale Res. Lett. 7, 559 (2012).CrossRefGoogle Scholar
  14. 14.
    J. Qi, M. Olmedo, J.G. Zheng, and J. Liu, Sci. Rep. 3, 2403 (2013).CrossRefGoogle Scholar
  15. 15.
    F. Chiu, P. Li, and W. Chang, Nanoscale Res. Lett. 7, 178 (2012).CrossRefGoogle Scholar
  16. 16.
    S. Porro, F. Risplendi, G. Cicero, K. Bejtka, G. Milano, P. Rivolo, A. Jasmin, A. Chiolerio, C.F. Pirri, and C. Ricciardi, J. Mater. Chem. C 5, 10517 (2017).CrossRefGoogle Scholar
  17. 17.
    G. Milano, S. Porro, M.Y. Ali, K. Bejtka, S. Bianco, F. Beccaria, A. Chiolerio, C.F. Pirri, and C. Ricciardi, J. Phys. Chem. C 122, 866 (2017).CrossRefGoogle Scholar
  18. 18.
    Y. Huang, Y. Luo, Z. Shen, G. Yuan, and H. Zeng, Nanoscale Res. Lett. 9, 381 (2014).CrossRefGoogle Scholar
  19. 19.
    J. Qi, M. Olmedo, J. Ren, N. Zhan, J. Zhao, J.G. Zheng, and J. Liu, ACS Nano 6, 1051 (2012).CrossRefGoogle Scholar
  20. 20.
    Y. Yang, X. Zhang, M. Gao, F. Zeng, W. Zhou, S. Xie, and F. Pan, Nanoscale 3, 1917 (2011).CrossRefGoogle Scholar
  21. 21.
    E.J. Yoo, I.K. Shin, T.S. Yoon, Y.J. Choi, and C.J. Kang, J. Nanosci. Nanotechnol. 14, 9459 (2014).CrossRefGoogle Scholar
  22. 22.
    P. Ukahapunyakul, N. Gridsadanurak, C. Sapcharoenkun, A. Treetong, P. Kasamechonchung, P. Khemthong, M. Horprathum, S. Porntheeraphat, W. Wongwiriyapan, J. Nukeaw, and A. Klamchuen, RSC Adv. 6, 7661 (2016).CrossRefGoogle Scholar
  23. 23.
    J.H. Park, T.I. Lee, S.H. Hwang, and J.M. Myoung, ACS Appl. Mater. Interfaces 6, 15638 (2014).CrossRefGoogle Scholar
  24. 24.
    K.D. Liang, C.H. Huang, C.C. Lai, J.S. Huang, H.W. Tsai, Y.C. Wang, Y.C. Shih, M.T. Chang, S.C. Lo, and Y.L. Chueh, ACS Appl. Mater. Interfaces 6, 16537 (2014).CrossRefGoogle Scholar
  25. 25.
    A.M. Rana, T. Akbar, M. Ismail, E. Ahmad, F. Hussain, I. Talib, M. Imran, K. Mehmood, K. Iqbal, and M.Y. Nadeem, Sci. Rep. 7, 39539 (2017).CrossRefGoogle Scholar
  26. 26.
    J. Fu, M. Hua, S. Ding, X. Chen, R. Wu, S. Liu, J. Han, C. Wang, H. Du, Y. Yang, and J. Yang, Sci. Rep. 6, 35630 (2016).CrossRefGoogle Scholar
  27. 27.
    U. Russo, D. Ielmini, C. Cagli, and A.L. Lacaita, IEEE Trans. Electron Dev. 56, 193 (2009).CrossRefGoogle Scholar
  28. 28.
    L.M. Kukreja, A.K. Das, and P. Misra, Bull. Mater. Sci. 32, 247 (2009).CrossRefGoogle Scholar
  29. 29.
    C. Chen, F. Pan, Z.S. Wang, J. Yang, and F. Zeng, J. Appl. Phys. 111, 013702 (2012).CrossRefGoogle Scholar
  30. 30.
    K.M. Kim, B.J. Choi, Y.C. Shin, S. Choi, and C.S. Hwang, Appl. Phys. Lett. 91, 012907 (2007).CrossRefGoogle Scholar
  31. 31.
    M.A. Lampert and R.B. Schilling, Semiconductors and Semimetals, ed. R.K. Willardson and A.C. Beer (New York: Academic Press, 1970), pp. 1–96.Google Scholar
  32. 32.
    L.E. Greene, M. Law, J. Goldberger, F. Kim, J.C. Johnson, Y. Zhang, R.J. Saykally, and P. Yang, Angew. Chem. Int. Ed. 42, 3031 (2003).CrossRefGoogle Scholar
  33. 33.
    Y.D. Chiang, W.Y. Chang, C.Y. Ho, C.Y. Chen, C.H. Ho, S.J. Lin, T.B. Wu, and J.H. He, IEEE Trans. Electron. Dev. 58, 1735 (2011).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.School of Physics, Institute of ScienceSuranaree University of TechnologyNakhon RatchasimaThailand
  2. 2.College of NanotechnologyKing Mongkut’s Institute of Technology LadkrabangBangkokThailand
  3. 3.National Nanotechnology Center (NANOTEC), NSTDAKlongluangThailand

Personalised recommendations