Effects of Ga Additives on the Thermal and Wetting Performance of Sn-0.7Cu Solder

  • M. HasnineEmail author
  • M. J. Bozack


The effects of Ga additions on thermal behavior, wettability, microstructure and properties of Sn-0.7Cu solder were investigated. The addition of Ga influences the surface tension of the solder and improves the wetting performance. The best wetting was achieved when the Ga content approached 0.5% (by weight), but further increases of Ga did not improve the wettability of the Sn-0.7Cu solder. The most uniform and refined grain structure was obtained with ∼ 0.5% Ga. The interfacial intermetallic (IMC) layer was also refined and reduced in thickness with the addition of Ga. Also, the hardness increases with increases in Ga content compared to SnCu solder without Ga. This is likely due to the refinement of grain structure and the uniform distribution of IMC phases in the solder.


Solder alloy undercooling wetting IMC microstructure hardness 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



  1. 1.
    M. Abtew and G. Selvaduray, Mater. Sci. Eng. R 27, 95 (2000).CrossRefGoogle Scholar
  2. 2.
    J.W. Evans, A Guide to Lead-Free Solders: Physical Metallurgy and Reliability (New York: Springer, 2007).Google Scholar
  3. 3.
    D. Witkin, J. Electron. Mater. 41, 190 (2012).CrossRefGoogle Scholar
  4. 4.
    J. Shen, Y. Pu, D. Wu, Q. Tang, and M. Zhao, J. Mater. Sci.: Mater. Electron. 26, 1572 (2015).Google Scholar
  5. 5.
    Z. Cai, J.C. Suhling, P. Lall, and M.J. Bozack, IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, p. 896 (2012).Google Scholar
  6. 6.
    A. Delhaise and P. Snugovsky, in Proceedings of the International Conference on Soldering and Reliability (2015).Google Scholar
  7. 7.
    A. Xian and G.L. Gong, J. Electron. Mater. 12, 1669 (2007).CrossRefGoogle Scholar
  8. 8.
    K.M. Watling, A. Chandler-Temple, and K. Nogita, Mater. Sci. Forum 857, 63 (2016).CrossRefGoogle Scholar
  9. 9.
    X. Jiachen, X. Songbai, L. Dongxue, and W. He, Adv. Mater. Sci. Eng. (2017). Scholar
  10. 10.
    H. Chen, C. Guo, J. Huang, and H. Wang, J. Mater. Sci.: Mater. Electron. 26, 5459 (2015).Google Scholar
  11. 11.
    Q.K. Zhang, W.M. Long, X.Q. Yu, Y.Y. Pei, and P.X. Qiao, J. Alloys Compd. 622, 973 (2015).CrossRefGoogle Scholar
  12. 12.
    D.X. Luo, S.B. Xue, and Z.Q. Li, J. Mater. Sci.: Mater. Electron. 25, 3566 (2014).Google Scholar
  13. 13.
    D.X. Luo, S.B. Xue, and S. Liu, J. Mater. Sci.: Mater. Electron. 25, 5195 (2014).Google Scholar
  14. 14.
    M.G. Cho, S.K. Seo, and H.M. Lee, Mater. Trans. 50, 2291 (2009).CrossRefGoogle Scholar
  15. 15.
    M. Hasnine, B. Tolla, and M. Karasawa, J. Mater. Sci.: Mater. Electron. 27, 16106 (2017).Google Scholar
  16. 16.
    A.A. El-Daly, A.E. Hammad, G.A. Al-Ganainy, and A.A. Ibrahiem, Mater. Des. 52, 966 (2013).CrossRefGoogle Scholar
  17. 17.
    R.J.K. Wassink, Soldering in Electronics (Ayr: Electrochemical Publications, 1994), pp. 14–41.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Kester Incorporated, Global Leader in Electronic MaterialsItascaUSA
  2. 2.Department of PhysicsAuburn UniversityAuburnUSA

Personalised recommendations