Improvement in Photodetection Characteristics of Graphene/p-Silicon Heterojunction Photodetector by PMMA/Graphene Cladding Layer

  • Raed Abdalrheem
  • F. K. YamEmail author
  • Abdul Razak Ibrahim
  • H. S. Lim
  • K. P. Beh
  • Anas A. Ahmed
  • Ammar A. Oglat
  • Khaled M. Chahrour
  • Omar F. Farhat
  • Naveed Afzal
  • Sabah M. Mohammad
  • M. Z. Mat Jafri


This work evaluates the photodetection characteristics of graphene/p-silicon (Gr/p-Si) heterojunction photodetector having Polymethyl Methacrylate (PMMA) as cladding layer. The graphene film was deposited on copper (Cu) by using the atmospheric pressure chemical vapor deposition method, whereas the PMMA layer was deposited on the Gr/Cu by the spin coating technique. The fabricated heterojunction was characterized by Raman spectroscopy, UV–visible spectroscopy and field emission scanning electron microscopy. The photodetection characteristics of the heterojunction photodetector were assessed through a current–voltage digital source system (Keithley 2400). The results showed that the addition of PMMA/Gr layer to Gr/p-Si enhanced the photodetection performance of the device upon the incident of light emitting diodes with various wavelengths (395 nm, 405 nm, 470 nm, 605 nm, 625 nm, 880 nm and 940 nm). Among all these wavelengths, light emitting diodes with 470 and 395 nm wavelengths were found to display better photodetection performance. For the 470 nm illumination case, the quantum efficiency and responsivity of the fabricated device were increased by ∼ 7 times, the sensitivity was increased by ∼ 12 times whereas the current gain was increased by ∼ 6 times. The enhancement of quantum efficiency and responsivity is attributed to the use of a PMMA/Gr layer that increased the light absorption, reduced the light reflectivity, changed the graphene band structures and decreased the device dark current. For the case of 395 nm illumination at 5 V, the gain was ∼ 9, the responsivity was ∼ 5.052 A/W and the quantum efficiency was ∼ 15.86 W/A while the sensitivity at 4 V was 650%.


Graphene/p-silicon polymethyl methacrylate chemical vapor deposition photodetection 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work is financially supported by the Grant “Clad (Topological Insulators and Transition Metal Dichalcogenides) Planar Photonic Devices” (203/PFIZIK/6770002), which is under the LRGS Grant “Graphene and Other 2-Dimensional Nanomaterial” (Grant No.: LRGS (2015)/NGOD/UM/KPT) from the Ministry of Higher Education (MOHE) of Malaysia. All support from the Universiti Sains Malaysia and various parties are gratefully acknowledged.


  1. 1.
    H.H. Radamson, Graphene, in Springer Handbook of Electronic and Photonic Materials, ed. by S. Kasap, P. Capper (Springer, Cham, 2017). p. 1.Google Scholar
  2. 2.
    M. Yazdan Mehr, S. Volgbert, W.D. Van Driel, and G.Q. Zhang, J. Electron. Mater. 46, 5866 (2017).Google Scholar
  3. 3.
    D. Xu, X. Yu, L. Yang, and D. Yang, J. Electron. Mater. 47, 5025 (2018).CrossRefGoogle Scholar
  4. 4.
    N. Karimizadeh, M. Babamoradi, R. Azimirad, and M. Khajeh, J. Electron. Mater. 47, 5452 (2018).CrossRefGoogle Scholar
  5. 5.
    H. Chang and H. Wu, Adv. Funct. Mater. 23, 1984 (2013).CrossRefGoogle Scholar
  6. 6.
    F. Bonaccorso, Z. Sun, T. Hasan, and A. Ferrari, Nat. Photon. 4, 611 (2010).CrossRefGoogle Scholar
  7. 7.
    F. Koppens, T. Mueller, P. Avouris, A. Ferrari, M. Vitiello, and M. Polini, Nat. Nanotechnol. 9, 780 (2014).CrossRefGoogle Scholar
  8. 8.
    E.J. Lee, S.Y. Choi, H. Jeong, N.H. Park, W. Yim, M.H. Kim, J.-K. Park, S. Son, S. Bae, and S.J. Kim, Nat. Commun. 6, 6851 (2015).CrossRefGoogle Scholar
  9. 9.
    G. Jo, M. Choe, S. Lee, W. Park, Y.H. Kahng, and T. Lee, Nanotechnology 23, 112001 (2012).CrossRefGoogle Scholar
  10. 10.
    A.K. Geim and K.S. Novoselov, The rise of graphene, in Nanoscience and Technology: A Collection of Reviews from Nature Journals. (World Scientific, Singapore, 2010). pp. 11–19.Google Scholar
  11. 11.
    C.-H. Liu, Y.-C. Chang, T.B. Norris, and Z. Zhong, Nat. Nanotechnol. 9, 273 (2014).CrossRefGoogle Scholar
  12. 12.
    P. Lv, X. Zhang, X. Zhang, W. Deng, and J. Jie, IEEE Electron Device Lett. 34, 1337 (2013).CrossRefGoogle Scholar
  13. 13.
    D. Sinha and J.U. Lee, Nano Lett. 14, 4660 (2014).CrossRefGoogle Scholar
  14. 14.
    C.-C. Chen, M. Aykol, C.-C. Chang, A. Levi, and S.B. Cronin, Nano Lett. 11, 1863 (2011).CrossRefGoogle Scholar
  15. 15.
    Y. Song, X. Li, C. Mackin, X. Zhang, W. Fang, T.S. Palacios, H. Zhu, and J. Kong, Nano Lett. 15, 2104 (2015).CrossRefGoogle Scholar
  16. 16.
    A. Di Bartolomeo, G. Luongo, F. Giubileo, N. Funicello, G. Niu, T. Schroeder, M. Lisker, and G. Lupina, 2D Mater. 4, 025075 (2017).Google Scholar
  17. 17.
    G. Luongo, A. Di Bartolomeo, F. Giubileo, C.A. Chavarin, and C. Wenger, J. Phys. D Appl. Phys. 51, 255305 (2018).CrossRefGoogle Scholar
  18. 18.
    C. Rattanabut, W. Muangrat, M. Phonyiem, W. Bungjongpru, W. Wongwiriyapan, and Y.J. Song, Mater. Today: Proc. 4, 6397 (2017).Google Scholar
  19. 19.
    H.J. Jeong, H.Y. Kim, S.Y. Jeong, J.T. Han, K.-J. Baeg, J.Y. Hwang, and G.-W. Lee, Carbon 66, 612 (2014).CrossRefGoogle Scholar
  20. 20.
    R. Abdalrheem, F.K. Yam, A.R. Ibrahim, K. Beh, Y. Ng, F.H.A. Suhaimi, H.S. Lim, M.Z. Mat Jafri, and A.A. Oglat, J. Phy.: Conf. Ser. 1083, 012038 (2018).Google Scholar
  21. 21.
    Y. Hao, Y. Wang, L. Wang, Z. Ni, Z. Wang, R. Wang, C.K. Koo, Z. Shen, and J.T. Thong, small 6, 195 (2010).Google Scholar
  22. 22.
    J.-B. Wu, X. Zhang, M. Ijäs, W.-P. Han, X.-F. Qiao, X.-L. Li, D.-S. Jiang, A.C. Ferrari, and P.-H. Tan, Nat. Commun. 5, 5309 (2014).CrossRefGoogle Scholar
  23. 23.
    S. Shivaraman, M.V.S. Chandrashekhar, J.J. Boeckl, and M.G. Spencer, J. Electron. Mater. 38, 725 (2009).CrossRefGoogle Scholar
  24. 24.
    J. Xie and J.P. Spallas, Agilent Technologies, 1 (2012).Google Scholar
  25. 25.
    B. Hu, H. Ago, Y. Ito, K. Kawahara, M. Tsuji, E. Magome, K. Sumitani, N. Mizuta, K.-I. Ikeda, and S. Mizuno, Carbon 50, 57 (2012).CrossRefGoogle Scholar
  26. 26.
    R.R. Nair, P. Blake, A.N. Grigorenko, K.S. Novoselov, T.J. Booth, T. Stauber, N.M. Peres, and A.K. Geim, Science 320, 1308 (2008).CrossRefGoogle Scholar
  27. 27.
    S.K. Behura, S. Nayak, I. Mukhopadhyay, and O. Jani, Carbon 67, 766 (2014).CrossRefGoogle Scholar
  28. 28.
    Y. Jia, X. Gong, P. Peng, Z. Wang, Z. Tian, L. Ren, Y. Fu, and H. Zhang, Nano Micro Lett. 8, 336 (2016).CrossRefGoogle Scholar
  29. 29.
    M. Mohammed, Z. Li, J. Cui, and T.-P. Chen, Nanoscale Res. Lett. 7, 302 (2012).CrossRefGoogle Scholar
  30. 30.
    L. Gammelgaard, J.M. Caridad, A. Cagliani, D.M. Mackenzie, D.H. Petersen, T.J. Booth, and P. Bøggild, 2D Mater. 1, 035005 (2014).Google Scholar
  31. 31.
    G.B. Barin, Y. Song, I. De Fátima Gimenez, A.G. Souza Filho, L.S. Barreto, and J. Kong, Carbon 84, 82 (2015).Google Scholar
  32. 32.
    P. Cheng, H. Zhao, J. Bao, L. Wu, D. Li, and D. Yang, JOSA B. 30, 405 (2013).CrossRefGoogle Scholar
  33. 33.
    C. Schinke, P. Christian Peest, J. Schmidt, R. Brendel, K. Bothe, M.R. Vogt, I. Kröger, S. Winter, A. Schirmacher, and S. Lim, AIP Adv. 5, 067168 (2015).Google Scholar
  34. 34.
    B. Partoens and F. Peeters, Phys. Rev. B. 74, 075404 (2006).CrossRefGoogle Scholar
  35. 35.
    T. Ohta, A. Bostwick, J.L. Mcchesney, T. Seyller, K. Horn, and E. Rotenberg, Phys. Rev. Lett. 98, 206802 (2007).CrossRefGoogle Scholar
  36. 36.
    J.-K. Lee, D.-H. Hwang, J. Hwang, H.-K. Jung, T. Zyung, and S.Y. Park, Synth. Met. 111, 489 (2000).CrossRefGoogle Scholar
  37. 37.
    S. Ahmad, J. Liu, W. Ji, and L. Sun, Materials 11, 1868 (2018).CrossRefGoogle Scholar
  38. 38.
    B. Abbas and M. Khalis, Acta Phys. Pol. A 115, 857 (2010).CrossRefGoogle Scholar
  39. 39.
    S. Mohamadi, N. Sharifi-Sanjani, and H. Mahdavi, J. Macromol. Sci. A 48, 577 (2011).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Raed Abdalrheem
    • 1
  • F. K. Yam
    • 1
    Email author
  • Abdul Razak Ibrahim
    • 1
  • H. S. Lim
    • 1
  • K. P. Beh
    • 1
  • Anas A. Ahmed
    • 1
  • Ammar A. Oglat
    • 1
  • Khaled M. Chahrour
    • 1
  • Omar F. Farhat
    • 2
  • Naveed Afzal
    • 3
  • Sabah M. Mohammad
    • 1
  • M. Z. Mat Jafri
    • 1
  1. 1.School of PhysicsUniversiti Sains MalaysiaGelugorMalaysia
  2. 2.Physics Department, Faculty of SciencesAl-Asmarya Islamic UniversityZlitenLibya
  3. 3.Centre for Advanced Studies in PhysicsGC UniversityLahorePakistan

Personalised recommendations