Advertisement

Facile One-Pot Synthesis of LiMnO2 Nanowire-Graphene Nanoplatelet Composites and Their Applications in Battery-Like Electrodes for High Performance Electrochemical Capacitors

  • Tao Chen
  • Joonho BaeEmail author
Article
  • 4 Downloads

Abstract

In this work, the well-dispersed LiMnO2 nanowires of diameter 100 nm were successfully prepared via a simple one-pot hydrothermal method. The morphology of the nanowires during their growth was dependent on the reaction time. The LiMnO2 nanowires were possibly formed by a nucleation and regrowth process. The LiMnO2 nanowires-graphene nanoplatelets (LiMnO2 nanowires-GNP) composite was then prepared by the direct milling of one-dimensional LiMnO2 nanowires and two-dimensional GNP. The LiMnO2 nanowires-GNP composite was employed as an electrode material to investigate its electrochemical performance. The LiMnO2 nanowires-GNP composite exhibited an outstanding mass-specific capacitance of 147 F g−1 at 5 mV s−1, as revealed by cyclic voltammetry measurement. This was more than three times higher than that exhibited by LiMnO2 nanowires (41 F g−1). The cycling performance of LiMnO2 nanowires-GNP electrode revealed a capacitance retention of 86% after 1000 charge–discharge cycles at 5 A g−1, which was superior to that exhibited by the LiMnO2 nanowires. Besides, the resistance of the LiMnO2 nanowires-GNP was lower than that of LiMnO2 nanowires, demonstrating that these hybrids could be considered as next generation electrode materials for electrochemical energy storage and conversion devices.

Keywords

LiMnO2 nanowires electrochemical capacitors 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2017R1D1A1B03032466). This work was supported by the Technology Innovation Program (10052774, Development of hybrid supercapacitor by nano structure carbon for ISG Applications) funded by the Ministry of Trade, Industry & Energy (MI, Korea).

Conflict of Interest

The authors declare that they have no conflicts of interests.

References

  1. 1.
    J.H. Bae, Y.J. Park, M.B. Lee, S.N. Cha, Y.J. Choi, C.S. Lee, J.M. Kim, and Z.L. Wang, Adv. Mater. 23, 3446 (2011).CrossRefGoogle Scholar
  2. 2.
    S.C. Jun, W. Zhu, X.D. Wu, Q.F. Han, and X. Wang, ACS Nano 4, 2822 (2010).CrossRefGoogle Scholar
  3. 3.
    J.H. Bae, M.K. Song, Y.J. Park, J.M. Kim, M.L. Liu, and Z.L. Wang, Angew. Chem. Int. Ed. 123, 1721 (2011).CrossRefGoogle Scholar
  4. 4.
    J. Chow, R.J. Kopp, and P.R. Portney, Science 302, 1528 (2003).CrossRefGoogle Scholar
  5. 5.
    X.L. He and J.H. Bae, J. Electron. Mater. 47, 5468 (2018).CrossRefGoogle Scholar
  6. 6.
    M.J. Kim and J.H. Kim, Electrochim. Acta 260, 921 (2018).CrossRefGoogle Scholar
  7. 7.
    M.M. Liu, J. Chang, Y. Bai, and J. Sun, RSC Adv. 5, 91389 (2015).CrossRefGoogle Scholar
  8. 8.
    D.W. Wang, F. Li, and H.M. Cheng, J. Power Source 185, 1563 (2008).CrossRefGoogle Scholar
  9. 9.
    P.G. Bruce, B. Scrosati, and J.M. Tarascon, Angew. Chem. Int. Ed. 47, 2930 (2011).CrossRefGoogle Scholar
  10. 10.
    A.S. Arico, P.G. Bruce, B. Scrosati, J.M. Tarascon, and W. Schalkwijc, Nat. Mater. 4, 366 (2005).CrossRefGoogle Scholar
  11. 11.
    Y. Kwon and J. Cho, Chem. Commun. 7, 1109 (2008).CrossRefGoogle Scholar
  12. 12.
    M.G. Kim, M.K. Jo, Y.S. Hong, and J. Cho, Chem. Commun. 8, 218 (2009).CrossRefGoogle Scholar
  13. 13.
    X. Li, F. Cheng, B. Guo, and J. Chen, J. Phys. Chem. B 109, 14017 (2005).CrossRefGoogle Scholar
  14. 14.
    J.J. Niu, A. Kushima, X.F. Qian, and J. Li, Nano Lett. 14, 4005 (2014).CrossRefGoogle Scholar
  15. 15.
    B.H. Zhang, Y. Liu, Z. Chang, Y.Q. Yang, Z.B. Wen, Y.P. Wu, and R. Holze, J. Power Sources 253, 98 (2014).CrossRefGoogle Scholar
  16. 16.
    B.H. Zhang, Y. Liu, Z. Chang, Y.Q. Yang, Z.B. Wen, and Y.P. Wu, Electrochim. Acta 130, 693 (2014).CrossRefGoogle Scholar
  17. 17.
    W.L. Cai, G.R. Li, K.L. Zhang, J.B. Zhou, Y.T. Qian, and J. Du, Dalton Trans. 45, 19221 (2016).CrossRefGoogle Scholar
  18. 18.
    P. Xiong, J.W. Zhu, L.L. Zhang, and X. Wang, Nanoscale Horiz. 1, 340 (2016).CrossRefGoogle Scholar
  19. 19.
    S. Bag and C.R. Raj, J. Mater. Chem. A 42, 17848 (2014).CrossRefGoogle Scholar
  20. 20.
    M.J. Jing, C.W. Wang, H.S. Hou, X.N. Jia, Y. Zhang, and X.B. Ji, J. Power Sources 298, 241 (2015).CrossRefGoogle Scholar
  21. 21.
    C.H. Wu, Q. Shen, R. Mi, S.X. Deng, Y.Q. Shu, H. Wang, and H. Yan, J. Mater. Chem. A 2, 15987 (2014).CrossRefGoogle Scholar
  22. 22.
    A.K. Sinha, M. Pradhan, and T. Pal, J. Phys. Chem. C 117, 23976 (2013).CrossRefGoogle Scholar
  23. 23.
    W.W. Sun, H.Q. Liu, Y.M. Liu, G.X. Bai, W.L. Shi, S. Guo, and X.Z. Zhao, Nanoscale 7, 13173 (2015).CrossRefGoogle Scholar
  24. 24.
    Y. Gogotsi and R.M. Penner, ACS Nano 12, 2081 (2018).CrossRefGoogle Scholar
  25. 25.
    H.Y. Liang, J.H. Lin, H.N. Jia, S.L. Chen, J.L. Qi, J. Cao, and T.S. Lin, J. Power Sources 378, 248 (2018).CrossRefGoogle Scholar
  26. 26.
    Y.F. Yuan, K. Amine, J. Lu, and R.S. Yassar, Nat. Commun. 15806, 1 (2017).Google Scholar
  27. 27.
    Q.T. Qu, Y. Shi, S. Tian, Y.P. Wu, and R. Holze, J. Power Sources 194, 1222 (2009).CrossRefGoogle Scholar
  28. 28.
    A. Pendashteh, S.E. Moosavifard, M.S. Rahmanifar, Y. Wang, R.B. Kaner, and M.F. Mousavi, Chem. Mater. 27, 3919 (2015).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Department of Nano-physicsGachon UniversitySeongnam-siRepublic of Korea

Personalised recommendations