Advertisement

First Principles Approach to Study the Structural, Electronic and Transport Properties of Dimer Chitosan with Graphene Electrodes

  • UpmaEmail author
  • Mohan L. Verma
Article
  • 10 Downloads

Abstract

Chitosan is a candidate biomaterial as an electro-active polymer, since it has its two isomers, referred to as cis (c–CH) and trans (t–CH) chitosan. In this theoretical study, the structural, electronic and transport properties of these two isomers are reported. Calculations based on density functional theory find c–CH and t–CH molecular isomers to be insulating. The device configuration consisting of graphene electrodes and chitosan molecules in the presence of an applied electric field showed a noticeable difference between c–CH and t–CH in IV curves. From projected density of states and density of states analysis, the calculated forbidden energy gap (Eg) of t–CH is reduced by 0.5 eV; therefore, t–CH shows semiconducting behaviour and works as an ionic electro-active polymer. Charge density curves exhibit the charge distribution and electrostatic interactions of atoms. The aim of this work is to study the ionic electro-active actuator behaviour of chitosan for its various applications such as bioelectronics, biomedical and electrochemical fields.

Keywords

Charge density density of states projected density of states IV curve density functional theory 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgment

The authors are grateful to the management of Shri Shankracharya Technical Campus, Bhilai, for their kind support in this work. The authors would also like to extend their sincere thanks to Prof. Ravindra Pandey, Michigan Technological University and Dr. Rodrigo G. Amorim, Department of Physics and Astrology, Uppsala University, Uppsala, Sweden, for their fruitful guidance.

References

  1. 1.
    S.K. Lee, S.J. Lee, H.J. An, S.E. Cha, J.K. Chang, B. Kim, and J.J. Pak, Int. Soc. Opt. Eng. (2002).  https://doi.org/10.1117/12.475196.Google Scholar
  2. 2.
    R. Mutlu, G. Alici, and W. Li, in IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM) (2003), pp. 1096–1101.Google Scholar
  3. 3.
    K. Wei, G. Zhu, Y. Tang, and X. Li, Polym. J. 45, 671 (2013).CrossRefGoogle Scholar
  4. 4.
    K. Kaneto and J. Phys, Conf. Ser. 704, 012004 (2016).CrossRefGoogle Scholar
  5. 5.
    S. Leary and Y. Bar-Cohen, in SPIE’s 6th Annual International Symposium on Smart Structures and Materials, Newport Beach, CA. (1999), Paper No. 3669-09.Google Scholar
  6. 6.
    E.D. Wilson, T. Assaf, M.J. Pearson, J.M. Rossiter, S.R. Anderson, J. Porrill, and P. Dean, J. R. Soc. Interface (2016).  https://doi.org/10.1098/rsif.2016.0547.Google Scholar
  7. 7.
    U. Deole, R. Lumia, M. Shahinpoor, and M. Bermudez, J. Micro-Nano Mech. 4, 95 (2008).CrossRefGoogle Scholar
  8. 8.
    X. Yuan, J. Phys Conf. Ser. 744, 012077 (2016).CrossRefGoogle Scholar
  9. 9.
  10. 10.
    M. Kruusmaa and P. Fiorini, ASTRA 2006 (Noordwijk: ESTEC, 2006), pp. 28–30.Google Scholar
  11. 11.
    J. Lin, W. Qu, and S. Zhang, Biochem. Anal. 360, 288 (2006).CrossRefGoogle Scholar
  12. 12.
    S. Skovstrup, S.G. Hansen, T. Skrydstrup, and B. Schiott, Biomacro (2010).  https://doi.org/10.1021/bm100736w.Google Scholar
  13. 13.
    E.F. Franca, R.D. Lins, L.C.G. Freitas, and T.P. Straatsma, J. Chem. Theory Comput. 4, 2141 (2008).CrossRefGoogle Scholar
  14. 14.
    H.K. No and S.P. Meyers, J. Agric. Food Chem. 37, 580 (1989).CrossRefGoogle Scholar
  15. 15.
    J. Kawada, T. Yui, K. Okuyama, and K. Ogawa, Biosci. Biotech. Biochem. (2001).  https://doi.org/10.1271/bbb.65.2542.Google Scholar
  16. 16.
    Y. Wu, W. Yang, C. Wang, J. Hu, and S. Fu, Int. J. Pharm. (2005).  https://doi.org/10.1016/j.ijpharm.2005.01.042.Google Scholar
  17. 17.
    X.L. Luo, J.J. Xu, Y. Du, and H.Y. Chen, Anal. Biochem. (2004).  https://doi.org/10.1016/j.ab.2004.07.005.Google Scholar
  18. 18.
    B. Yin, R. Yuan, Y.Q. Chai, S.H. Chen, S.R. Cao, Y. Xu, and P. Fu, Biotech. Lett. 30, 317 (2008).CrossRefGoogle Scholar
  19. 19.
    Z.X. Tang, J.Q. Qian, and L.E. Shi, Mater. Lett. 61, 37 (2007).CrossRefGoogle Scholar
  20. 20.
    M. Yang, Y. Yang, B. Liu, G. Shen, and R. Yu, Sens. Actuator B Chem. 101, 269 (2004).CrossRefGoogle Scholar
  21. 21.
    A.R. Juarez, H.H. Cocoletzi, and E.C. Anota, Rev. Mex. Ing. Quím. 14, 789 (2015).Google Scholar
  22. 22.
    L.A.J. Moralesa, H.H. Cocoletzi, E.C. Anota, E.Á. Almanza, and M.G.T. Arvide, Curr. Org. Chem. (2017).  https://doi.org/10.2174/1385272821666170511165159.Google Scholar
  23. 23.
    V.K. Mourya and N.N. Inamdar, React. Func. Polym. 68, 1013 (2008).CrossRefGoogle Scholar
  24. 24.
    K. Kurita, Mari. Biotech. 8, 203 (2006).CrossRefGoogle Scholar
  25. 25.
    Q. He, M. Yu, X. Yang, K.J. Kim, and Z. Dai, Smart Mater. Struct. (2015).  https://doi.org/10.1088/0964-1726/24/6/065026.Google Scholar
  26. 26.
    S. Alwarappan, K. Cissell, S. Dixit, C.Z. Li, and S. Mohapatra, J. Elect. Chem. (2012).  https://doi.org/10.1016/j.jelechem.2012.09.026.Google Scholar
  27. 27.
    M.D. Hanwell, D.E. Curtis, D.C. Lonie, T. Vandermeersch, E. Zurek, and G.R. Hutchison, J. Cheminform. (2012).  https://doi.org/10.1186/1758-2946-4-17.Google Scholar
  28. 28.
    J.P. Perdew and A. Zunger, Phys. Rev B. (1981).  https://doi.org/10.1103/physrevb.23.5048.Google Scholar
  29. 29.
    M.S. Jose, A. Emilio, D.G. Julian, G. Alberto, J. Javier, and O. Pablo, J. Phys. Condens. Matt. 14, 2745 (2002).CrossRefGoogle Scholar
  30. 30.
    S. Wen, W. Guan, J. Wang, Z. Lang, L. Yan, and Z. Su, Dalton Trans. (2012).  https://doi.org/10.1039/c2dt12465c.Google Scholar
  31. 31.
    M. Ioelovich, Am. J. BioSci. (2014).  https://doi.org/10.11648/j.ajbio.s.20140201.12.Google Scholar
  32. 32.
    K. Yang, R. Peverati, D.G. Truhlar, and R. Valero, J. Chem. Phys. 135, 044118 (2011).CrossRefGoogle Scholar
  33. 33.
    N.E. Schultz, Y. Zhao, and D.G. Truhlar, J. Phys. Chem. A. (2015).  https://doi.org/10.1021/jp0539223.Google Scholar
  34. 34.
    F. Akman, Cellulose Chem. Technol. 51, 253 (2017).Google Scholar
  35. 35.
    M. Zemzemi and S. Alaya, Mater. Sci. Appl. 6, 661 (2015).Google Scholar
  36. 36.
    J.Q. Lu, J. Wu, H. Chen, W. Duan, B.L. Gu, and Y. Kawazoe, Phys. Lett. A 323, 154 (2004).CrossRefGoogle Scholar
  37. 37.
    A. Pahuja and S. Srivastava, Hindawi Phys. Res. Int. (2014).  https://doi.org/10.1155/2014/872381.Google Scholar
  38. 38.
    M. Brandbyge, J.L. Mozos, P. Ordejón, J. Taylor, and K. Stokbro, Phys. Rev. B 65, 165401 (2002).CrossRefGoogle Scholar
  39. 39.
    H. Nakamura, A.R. Rocha, and S. Sanvito, Phys. Rev. B Condens. Matt. (2008).  https://doi.org/10.1103/physrevb.78.235420.Google Scholar
  40. 40.
    K. Selvaraju, M. Jothi, and P. Kumaradhas, J. Comput. Theor. Nanosci. 10, 1 (2013).CrossRefGoogle Scholar
  41. 41.
    A. Shafiee, M.M. Salleh, and M. Yahaya, Sains Malays. 40, 173 (2011).Google Scholar
  42. 42.
    P.I. Djurovich, E.I. Mayo, S.R. Forest, and M.E. Thompson, Org. Elect. 10, 515 (2009).CrossRefGoogle Scholar
  43. 43.
    T. Rangel, G.M. Rignanese, and V. Olevano, Beilstein J. Nanotechnol. 6, 1247 (2015).CrossRefGoogle Scholar
  44. 44.
    V. Balachandran, A. Lakshmi, and A. Janaki, J. Mol. Struct. 1006, 395 (2011).CrossRefGoogle Scholar
  45. 45.
    S. Datta, Superlattices Microstruct. (2000).  https://doi.org/10.1006/spmi.2000.0920.Google Scholar
  46. 46.
    S.J.V. Molen and P. Liljeroth, J. Phys Conden. Matt. 22, 133001 (2010).CrossRefGoogle Scholar
  47. 47.
    H. He, R. Pandey, I. Boustani, and S.P. Karna, J. Phys. Chem. C 114, 4149 (2010).CrossRefGoogle Scholar
  48. 48.
    K. Stokbro, M. Brandbyge, J. Taylor, and P. Ordejon, Nanotech (2003).  https://doi.org/10.1196/annals.1292.014.Google Scholar
  49. 49.
    M.D. Ventra, N.D. Lang, and S.T. Pantelides, Chem. Phys. 281, 189 (2002).CrossRefGoogle Scholar
  50. 50.
    C. Zhang, Y. He, H.P. Cheng, Y. Xue, M.A. Ratner, X.G. Zhang, and P. Krstic, Phys. Rev. B 73, 125445 (2006).CrossRefGoogle Scholar
  51. 51.
    N.A. Zimbovskaya and M.R. Pederson, Phys. Rep. 509, 1 (2011).CrossRefGoogle Scholar
  52. 52.
    M.U. Farooq, A. Hashmi, and J. Hong, Sci. Rep. 5, 12482 (2015).CrossRefGoogle Scholar
  53. 53.
    M.A. Reed, J. Chen, A.M. Rawlett, D.W. Price, and J.M. Tour, App. Phys. Lett. 78, 3735 (2001).CrossRefGoogle Scholar
  54. 54.
    C.P. Husband, S.M. Husband, J.S. Daniels, and J. Tour, IEEE Trans. Elect. Dev. (2003).  https://doi.org/10.1109/ted.2003.815860.Google Scholar
  55. 55.
    S.Y. Quek, J.B. Neaton, M.S. Hybertsen, E. Kaxiras, and S.G. Louie, Phys. Rev. Lett. 98, 066807 (2007).CrossRefGoogle Scholar
  56. 56.
    R. Pati, M. McClain, and A. Bandyopadhyay, Phys. Rev. Lett. 100, 246801 (2008).CrossRefGoogle Scholar
  57. 57.
    S. Guo, J.M. Artés, and I.D. Pérez, Electrochim. Acta (2013).  https://doi.org/10.1016/j.electacta.2013.03.146.Google Scholar
  58. 58.
    R.G. Pearson, J. Am. Chem. Soc. 85, 3533 (1963).CrossRefGoogle Scholar
  59. 59.
    R.G. Pearson, J. Chem. Educ. 45, 581 (1968).CrossRefGoogle Scholar
  60. 60.
    R.G. Pearson, J. Chem. Educ. 45, 643 (1968).CrossRefGoogle Scholar
  61. 61.
    R.G. Amorim, X. Zhong, S. Mukhopadhyay, R. Pandey, A.R. Rocha, and S.P. Karna, J. Phys. Condens Matt. 25, 195801 (2013).CrossRefGoogle Scholar
  62. 62.
    F.L. Hirshfeld, Theor. Chim. Acta 44, 129 (1977).CrossRefGoogle Scholar
  63. 63.
    R.G. Pearson, Proc. Nati. Acad. Sci. USA 83, 8440 (1986).CrossRefGoogle Scholar
  64. 64.
    J.H. Tan, L. Guo, T.M. Lv, and S.T. Zhang, Int. J. Electrochem. Sci. 10, 823 (2015).Google Scholar
  65. 65.
    E.G. Demissie, S.B. Kassa, and G.W. Woyessa, Int. J. Sci. Eng. Res. 5, 304 (2014).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Computational Nanoionics Research Lab, Department of Applied Physics, FET-SSGIShri Shankaracharya Technical CampusBhilaiIndia

Personalised recommendations