Advertisement

Behavior of SiNx/SiO2 Double Layer for Surface Passivation of Compensated p-Type Czochralski Silicon Wafers

  • M. MaoudjEmail author
  • D. Bouhafs
  • N. Bourouba
  • A. El Amrani
  • H. Tahi
  • A. Hamida-Ferhat
Article
  • 4 Downloads

Abstract

Surface passivation of Czochralski (Cz) p-type compensated silicon using a hydrogenated silicon nitride/silicon oxide (SiNx-H/SiO2) double layer (hereinafter called SiNx/SiO2) has been investigated. The characteristics of the deposited films depended strongly on surface preparation, deposition process, and annealing parameters. Fourier-transform infrared (FTIR) spectroscopy was used to analyze the chemical bonds in the Si–SiNx/SiO2 structure, and quasi-steady-state photoconductance (QSSPC) measurements were used to evaluate the minority-carrier lifetime (τeff), to check the quality of the passivation. The results showed that, after SiNx/SiO2 double-layer deposition, τeff remained rather poor (13.29 μs). This low degree of passivation is principally due to the appearance of an inversion layer after oxidation, inducing switching of the semiconductor type at the surface. This inversion layer is due to the segregation properties of both boron and phosphorus impurities. This phenomenon was highlighted by secondary-ion mass spectrometry (SIMS) characterization, revealing a substantial phosphorus concentration near the Si–SiO2 interface and penetration of boron inside the oxide, with concentration of 1 × 1018 cm−3 and 4 × 1018 cm−3, respectively. Annealing at 400°C under low pressure of 3.34 × 10−3 kPa improved the minority-carrier lifetime to τeff = 15.94 μs, leading to enhanced surface passivation related to the reduced interface state density and improved statistical distribution of different bonding environments.

Keywords

Inversion layer SiNx/SiO2 compensated silicon surface passivation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

The authors gratefully acknowledge financial support from the Directorate General for Scientific Research and Technological Development (Algerian Ministry of Higher Education and Scientific Research).

References

  1. 1.
    R.S. Bonilla, B. Hoex, P. Hamer, and P.R. Wilshaw, Phys. Status Solidi A 1, 1 (2017).  https://doi.org/10.1002/pssa.201700293.Google Scholar
  2. 2.
    S. Keipert-Colberg, N. Barkmann, C. Streich, A. Schutt, D. Suwito, P. Schafer, S. Muller, and D. Borchert, in 26th EU PVSEC (2011), pp. 1770–1773.Google Scholar
  3. 3.
    J. Schmidt, M. Kerr, and A. Cuevas, Semicond. Sci. Technol. 16, 164 (2001).CrossRefGoogle Scholar
  4. 4.
    J. Lu, Q. Wei, C. Wu, Y. Hu, W. Lian, and Z. Ni, in 32nd EU PVSEC (2016), pp. 264–262  https://doi.org/10.4229/eupvsec20162016-2av.1.33.
  5. 5.
    S. Mack, A. Wolf, C. Brosinsky, S. Schmeisser, A. Kimmerle, P. Saint-Cast, M. Hofmann, and D. Biro, IEEE J. Photovolt. (2011).  https://doi.org/10.1109/JPHOTOV.2011.2173299.Google Scholar
  6. 6.
    S. Rein, W. Kwapil, J. Broisch, G. Emanuel, M. Spitz, I. Reis, A. Weil, D. Biro, M. Glatthaar, A.K. Soiland, E. Enebakk, and R. Tronstad, in 24th EU PVSEC (2009), pp. 1140–1147.Google Scholar
  7. 7.
    S. Rein, J. Geilker, W. Kwapil, G. Emanuel, and I. Reis, in 5th WCPEC (2010), pp. 1322–1327.Google Scholar
  8. 8.
    S. Rein and S.W. Glunz, Appl. Phys. Lett. (2003).  https://doi.org/10.1063/1.1544431.Google Scholar
  9. 9.
    K. Bothe, J. Schmidt, and R. Hezel, in 3rd WCPEC (2003), pp. 1077–1080.Google Scholar
  10. 10.
    F. Rougieux, D. Macdonald, K.R, Mcintosh, and A. Cuevas, in 24th EU PVSEC (2009), pp. 1086–1089.Google Scholar
  11. 11.
    A. Sassella, A. Borghesi, F. Corni, A. Monelli, G. Ottaviani, R. Tonini, B. Pivac, M. Bacchetta, and L. Zanotti, J. Vac. Sci. Technol. A (1997).  https://doi.org/10.1116/1.580495.Google Scholar
  12. 12.
    J.Y. Lee, Rapid Thermal Processing of Silicon Solar Cells—Passivation and Diffusion. PhD Thesis, University of Freiburg (2003).Google Scholar
  13. 13.
    M.L. Green, E.P. Gusev, R. Degraeve, and E.L. Garfunkel, J. Appl. Phys. (2001).  https://doi.org/10.1063/1.1385803.Google Scholar
  14. 14.
    I.W. Boyd, Appl. Phys. Lett. (1987).  https://doi.org/10.1063/1.98408.Google Scholar
  15. 15.
    P.G. Pai, S.S. Chao, Y. Takagi, and G. Lucovski, J. Vac. Sci. Technol. A (1986).  https://doi.org/10.1116/1.573833.Google Scholar
  16. 16.
    D. Krcho, in Proceedings of Solar (Australian and New Zealand Solar Energy Society, 1997), pp. 1–7.Google Scholar
  17. 17.
    J-F. Lelievre, Optimisation des propriétés optiques, passivantes et structurales pour applications photovoltaïques, PhD thesis, INSA - Lyon (2007).Google Scholar
  18. 18.
    E. San Andrès, A. Del Prado, F.L. Martinez, and I. Martil, J. Appl. Phys. (2000).  https://doi.org/10.1063/1.371996.Google Scholar
  19. 19.
    J. Schmidt, M. Kerr, and A. Cuevas, Sci. Technol. (2001).  https://doi.org/10.1088/0268-1242/16/3/308.Google Scholar
  20. 20.
    B.S. Sahu, A. Kapoor, P. Srivastava, O.P. Agnihotri, and S.M. Shivaprasad, Semicond. Sci. Technol. 18, 670 (2003).CrossRefGoogle Scholar
  21. 21.
    R. Van Overstraeten and G. Caratti, Photovoltaic Power Generation, Vol. 3 (Dordrecht: Kluwer, 1988), p. 86.CrossRefGoogle Scholar
  22. 22.
    Y. Kuo, in Thin Film Transistor Technology V: Proceedings of the International Symposium (2015), p. 251.Google Scholar
  23. 23.
    J.F. Lelièvre, E. Fourmond, A. Kaminski, O. Palais, D. Ballutaud, and M. Lemiti, Sol. Energy Mater. Sol. Cells (2009).  https://doi.org/10.1016/j.solmat.2009.01.023.Google Scholar
  24. 24.
    E. San Andrès, A. Del Prado, I. Martil, and G. Gonzalez-Diaz, J. Appl. Phys. (2003).  https://doi.org/10.1063/1.1626798.Google Scholar
  25. 25.
    S.T. Pantelides and S. Zollner, Silicon-Germanium Carbon Alloys: Growth, Properties and Applications (London: Taylor and Francis, 2002), p. 261.Google Scholar
  26. 26.
    F. Shimura, Oxygen in Silicon (Amsterdam: Elsevier, 1994), p. 18.Google Scholar
  27. 27.
    H. Yoshino, K. Kamiya, and H. Nasu, J. Non Cryst. Solids (1990).  https://doi.org/10.1016/0022-3093(90)91024-L.Google Scholar
  28. 28.
    D.L. Wood and E.M. Rabinovich, Appl. Spectrosc. 43, 263 (1989).CrossRefGoogle Scholar
  29. 29.
    R. Ekwal Sah, J. Zhang, J.M. Deen, J. Yota, and A. Toriumi, ECS Trans. 19, 471 (2009).Google Scholar
  30. 30.
    M.R. Baklanov, P.S. Ho, and E. Zschech, Advanced Interconnects for ULSI Technology (Hoboken: Wiley, 2012), p. 54.CrossRefGoogle Scholar
  31. 31.
    FT-IR Measurement of Interstitial Oxygen and Substitutional Carbon in Silicon Wafers, application note 50640, Ross Boyle, Thermo Fisher Scientific, Madison, WI, USA. http://www.thermo.com.cn/Resources/201007/271120772.pdf. Accessed 19 Mar 2019.
  32. 32.
    W. Gös, Hole Trapping and the Negative Bias Temperature Instability, PhD thesis, Vienna University of Technology (2011).Google Scholar
  33. 33.
    K. Vanheusden and A. Stesmans, Appl. Phys. Lett. (1993).  https://doi.org/10.1063/1.109379.Google Scholar
  34. 34.
    P.M. Lenahan and S.E. Curry, Appl. Phys. Lett. (1990).  https://doi.org/10.1063/1.103278.Google Scholar
  35. 35.
    N. Balaji, S. Lee, C. Park, J. Raja, H.T.T. Nguyen, S. Chatterjee, K. Nikesh, R. Jeyakumar, and J. Yi, RSC Adv. (2016).  https://doi.org/10.1016/j.cap.2017.10.004.Google Scholar
  36. 36.
    N. Tomozeiu, J.J. van Hapert, E.E. van Faassen, W. Arnoldbik, A.M. Vredenberg, and F.H.P.M. Habraken, J. Optoelectron. Adv. Mater. 4, 513 (2002).Google Scholar
  37. 37.
    X.-J. Jia, C.-L. Zhou, J.-J. Zhu, S. Zhou, and W.-J. Wang, Chin. Phys. B 25, 127301 (2016).CrossRefGoogle Scholar
  38. 38.
    Y. Chang: Etude de caractérisation de matériaux diélectriques de grille a forte permittivité pour les technologies CMOS ultimes, PhD thesis, INSA - Lyon (2003).Google Scholar
  39. 39.
    A.R. Londergan, Atomic Layer Deposition Applications, 4th ed. (Pennington: The Electrochemical Society, 2008), p. 286.Google Scholar
  40. 40.
    E.H. Nicollian and J.R. Brews, MOS Physics and Technology (Hoboken: Wiley, 1982), p. 321.Google Scholar
  41. 41.
    H. Park, J. Qi, Y. Xu, K. Varga, S.M. Weiss, B.R. Rogers, G. Lüpke, and N. Tolk, Appl. Phys. Lett. (2009).  https://doi.org/10.1063/1.3202420.Google Scholar
  42. 42.
    H. Park, J. Qi, Y. Xu, K. Varga, S.M. Weiss, B.R. Rogers, G. Lüpke, and N. Tolk, Phys. Status Solidi B (2010).  https://doi.org/10.1002/pssb.200983956.Google Scholar
  43. 43.
    D. Predoi, V. Kuncser, M. Zaharescu, W. Keune, B. Sahoo, M. Valeanu, M. Crisan, M. Raileanu, A. Jitianu, and G. Filoti, Phys. Status Solidi (C) (2004).  https://doi.org/10.1002/pssc.200405492.Google Scholar
  44. 44.
    D. Predoi, V. Kuncser, M. Zaharescu, A. Jitianu, M. Crisan, W. Keune, B. Sahoo, G. Filoti, and M. Raileanu, J. Optoelectron. Adv. Mater. 8, 518 (2006).Google Scholar
  45. 45.
    F. Ahangaran, A. Hassanzadeh, and S. Nouri, Int. Nano Lett. (2013).  https://doi.org/10.1186/2228-5326-3-23.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Research Center in Semiconductor Technology for Energetic (CRTSE)AlgiersAlgeria
  2. 2.Department of Electronics, Faculty of TechnologyUniversity Ferhat AbbasSétifAlgeria
  3. 3.Advanced Technology Development Center CDTABaba-Hassen, AlgiersAlgeria

Personalised recommendations