Advertisement

Condition Monitoring and Failure Prediction of Gear Rotation Using a Contactless RF Magnetic Sensor

  • O. ThiabgohEmail author
  • T. Eggers
  • S. D. Jiang
  • J. F. Sun
  • M. H. PhanEmail author
Article
  • 19 Downloads

Abstract

Development of sensor devices that can precisely detect small tilt angles of an anomalously rotating gear is in great demand for real-time condition monitoring and predictive maintenance of gear-based machines. The utility of a high-frequency giant magnetoimpedance (GMI)-based sensor for real-time monitoring of a rotating gear has been demonstrated. The rotation speed and tilt position of a magnetically labeled rotating gear were measured remotely from a distance of 14 cm. Small changes in magnetic field, down to mOe level, were detected using an optimized Co69.25Fe4.25Si13B12.5Nb1 microwire sensor. The sensing element exhibited remarkable field sensitivity (\( \eta \)) and GMI ratio of 230%/Oe and 300%, respectively. This contactless magnetic sensor is useful for future development of real-time condition monitoring and predicting failure of a rotating object.

Keywords

Gear rotation monitoring Co-based microwire magnetoimpedance magnetic sensors 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

Research at USF was supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award No. DE-FG02-07ER46438 (GMI studies and sensor tests). Research at Harbin Institute of Technology was supported by the National Natural Science Foundation of China (NSFC) under Grant No. 51671071 (microwire fabrication and MFM).

References

  1. 1.
    S. Delvecchio, G. D’Elia, M. Malago, and G. Dalpiaz, Advances in Condition Monitoring of Machinery in Non-Stationary Operations: Proceedings of the Third International Conference on Condition Monitoring of Machinery in Non-Stationary Operations CMMNO 2013, ed. G. Dalpiaz, R. Rubini, G. D’Elia, M. Cocconcelli, F. Chaari, R. Zimroz, W. Bartelmus, and M. Haddar (Berlin: Springer, 2014), pp. 407–415; K. Janssens and L. Britte, ibid., pp. 453–463.Google Scholar
  2. 2.
    J. Fraden, Handbook of Modern Sensors: Physics, Designs, and Applications, 5th ed. (Cham: Springer, 2016), pp. 3–7.Google Scholar
  3. 3.
    W.B. Ribbens, Understanding Automotive Electronics: An Engineering Perspective, 8th ed. (Oxford: Butterworth-Heinemann, 2017), pp. 183–208.CrossRefGoogle Scholar
  4. 4.
    J. Lenz and A. Edelstein, IEEE Sens. J. 6, 631 (2006).CrossRefGoogle Scholar
  5. 5.
    Y.S. Byun and Y.C. Kim, Sensors 16, 1 (2016).CrossRefGoogle Scholar
  6. 6.
    X. Song, F. Jiancheng, and H. Bangcheng, IEEE Trans. Power Electron. 31, 4720 (2015).Google Scholar
  7. 7.
    C. Giebeler, D.J. Adelerhof, A.E.T. Kuiper, J.B.A. van Zon, D. Oelegeschlager, and G. Schulz, Sens. Actuators A 91, 16 (2001).CrossRefGoogle Scholar
  8. 8.
    G.A. Prinz, J. Magn. Magn. Mater. 200, 57 (1999).CrossRefGoogle Scholar
  9. 9.
    N. Munzenrieder, D. Karnaushenko, L. Petti, G. Cantrarella, C. Vogt, L. Buthe, D.D. Karnaushenko, O.G. Schmidt, D. Makarov, and G. Troster, Adv. Electron. Mater. 2, 1600188 (2016).CrossRefGoogle Scholar
  10. 10.
    I.O. Bucak, Sensors 10, 1918 (2010).CrossRefGoogle Scholar
  11. 11.
    Y. Wang, X. Ma, M. Wang, and C. Cao, J. Control Sci. Eng. 2016, 1 (2016).Google Scholar
  12. 12.
    M. Vazquez and A. Hernando, J. Phys. D Appl. Phys. 29, 939 (1996).CrossRefGoogle Scholar
  13. 13.
    T. Uchiyama, K. Mohri, H. Itho, K. Nakashima, J. Ohuchi, and Y. Sudo, IEEE Trans. Magn. 36, 3670 (2000).CrossRefGoogle Scholar
  14. 14.
    K. Mohri, T. Uchiyama, and L.V. Panina, Sens. Actuators A 59, 1 (1997).CrossRefGoogle Scholar
  15. 15.
    R. Valenzuela, M. Vazquez, and A. Hernando, J. Appl. Phys. 79, 6549 (1996).CrossRefGoogle Scholar
  16. 16.
    H.X. Peng, F. Qin, and M.H. Phan, Ferromagnetic Microwire Composites from Sensors to Microwave Applications (Cham: Springer, 2016).CrossRefGoogle Scholar
  17. 17.
    T. Uchiyama, K. Mohri, Y. Honkura, and L.V. Panina, IEEE Trans. Magn. 48, 3833 (2012).CrossRefGoogle Scholar
  18. 18.
    L.V. Panina and K. Mohri, Appl. Phys. Lett. 65, 1189 (1994).CrossRefGoogle Scholar
  19. 19.
    R.S. Beach and A.E. Berkowitz, Appl. Phys. Lett. 64, 3652 (1994).CrossRefGoogle Scholar
  20. 20.
    M.H. Phan and H.X. Peng, Prog. Mater. Sci. 53, 323 (2008).CrossRefGoogle Scholar
  21. 21.
    S.D. Jiang, T. Eggers, O. Thiabgoh, D.W. Xing, W.D. Fei, H.X. Shen, J.S. Liu, J.R. Zhang, W.B. Fang, J.F. Sun, H. Srikanth, and M.H. Phan, Sci. Rep. 5, 1 (2017).Google Scholar
  22. 22.
    M. Ipatov, A. Chizhik, V. Zhukova, J. Gonzalez, and A. Zhukov, J. Appl. Phys. 109, 113924 (2011).CrossRefGoogle Scholar
  23. 23.
    L. Kraus, Sens. Actuators A 106, 187 (2003).CrossRefGoogle Scholar
  24. 24.
    L.D. Landau and E.M. Lifshits, Electrodynamics of Continuous Media, 2nd ed. (Oxford: Pergamon, 1984), pp. 208–212.Google Scholar
  25. 25.
    C. Dolabdjian and D. Menard, High Sensitivity Magnetometers, ed. A. Grosz, M.J. Haji-Sheikh, and S.C. Mukhopadhyay (Cham: Springer, 2017), pp. 103–126.CrossRefGoogle Scholar
  26. 26.
    L. Gonzalez-Legarreta, V.M. Prida, A. Talaat, M. Ipatov, V. Zhukova, A. Zhukov, L. Escoda, J.J. Sunol, J. Gonzalez, and B. Hernando, High Performance Soft Magnetic Materials, ed. A. Zhukov (Cham: Springer, 2017), pp. 33–50.CrossRefGoogle Scholar
  27. 27.
    D. de Cos, A. Garcia-Arribas, and J.M. Barandiaran, Sens. Actuators A 115, 368 (2004).CrossRefGoogle Scholar
  28. 28.
    F. Fiorillo, Characterization and Measurement of Magnetic Materials (Delft: Academic, 2004), p. 452.Google Scholar
  29. 29.
    L.G.C. Melo, D. Menard, P. Ciureanu, and A. Yelon, J. Appl. Phys. 92, 7272 (2002).CrossRefGoogle Scholar
  30. 30.
    D. Makarov, M. Melzer, D. Karnaushenko, and O.G. Schmidt, Appl. Phys. Rev. 3, 011101 (2016).CrossRefGoogle Scholar
  31. 31.
    T. Wang, Y. Zhou, C. Lei, J. Luo, S. Xie, and H. Pu, Biosens. Bioelectron. 90, 418 (2017).CrossRefGoogle Scholar
  32. 32.
    G.V. Kurlyandskaya, E. Fernandez, A.P. Safronov, A.V. Svalov, I. Beketov, A.B. Beitia, A. Garcia-Arribas, and F.A. Blyakham, Appl. Phys. Lett. 106, 193702 (2015).CrossRefGoogle Scholar
  33. 33.
    M. Knobel, M.L. Sanchez, C. Gomez-Polo, P. Marin, M. Vazquez, and A. Hernando, J. Appl. Phys. 79, 1646 (1994).CrossRefGoogle Scholar
  34. 34.
    G. Rieger, K. Ludwig, J. Hauch, and W. Clemens, Sens. Actuators A 91, 7 (2001).CrossRefGoogle Scholar
  35. 35.
    R. Mardani, A. Amirabadizadez, and M. Ghanaatshoar, Mod. Phys. Lett. B 28, 1450197 (2014).CrossRefGoogle Scholar
  36. 36.
    J. Nabias, A. Asfour, and J.P. Yonnet, IEEE Trans. Magn. 53, 4001005 (2017).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Laboratory for Advanced Sensor Technologies, Department of PhysicsUniversity of South FloridaTampaUSA
  2. 2.Department of Physics, Faculty of ScienceUbon Ratchathani UniversityWarin Chamrap, Ubon RatchathaniThailand
  3. 3.School of Materials Science and EngineeringHarbin Institute of TechnologyHarbinPeople’s Republic of China

Personalised recommendations