Advertisement

Strain Modulated Optoelectronic Properties of CdO Monolayer

  • Rajneesh Chaurasiya
  • Radha Raman
  • Shubham Tyagi
  • Ambesh DixitEmail author
Article
  • 10 Downloads

Abstract

We studied the effect of biaxial tensile and compressive strain on the electronic and optical properties using the density function theory. Electronic properties are investigated in terms of the electronic band structure and density of states. CdO monolayer exhibits a direct bandgap ∼ 1.35 eV using a modified Becke–Johnson approximation. The value of bandgap decreases under both biaxial tensile and compressive strains. Moreover, direct to indirect electronic bandgap transition is observed above 8% tensile strain, whereas direct bandgap nature is conserved under compressive strain. The effective mass of an electron is nearly insensitive to strain, whereas hole effective mass shows linear increment with strain and a sudden jump at the electronic transition point of above 8% tensile strain. The noticed low reflectivity in unstrained and compressive strained conditions suggests that the CdO monolayer may be a promising material for transparent conducting oxide applications.

Keywords

CdO monolayer oxide semiconductor cadmium oxide electronic band structure strain optical properties 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

Author Ambesh Dixit greatly acknowledges the Department of Science and Technology (DST) Government of India through Project # DST/INT/Mexico/P-02/2016 for this work.

References

  1. 1.
    A. Purohit, S. Chander, S.L. Patel, K.J. Rangra, and M.S. Dhaka, Phys. Lett. A 381, 1910 (2017).CrossRefGoogle Scholar
  2. 2.
    R. Chaurasiya, M. S. Khan, and A. Srivastava, in 2015 IEEE International Symposium Nanoelectronic Information Systems 252 vol. (2015).Google Scholar
  3. 3.
    M. Zaien, N.M. Ahmed, and Z. Hassan, Int. J. Electrochem. Sci. 8, 6988 (2013).Google Scholar
  4. 4.
    F. Yakuphanoglu, Appl. Surf. Sci. 257, 1413 (2010).CrossRefGoogle Scholar
  5. 5.
    R.S. Mane, H.M. Pathan, C.D. Lokhande, and S.H. Han, Sol. Energy 80, 185 (2006).CrossRefGoogle Scholar
  6. 6.
    C.H. Champness and C.H. Chan, Sol. Energy Mater. Sol. Cells 37, 75 (1995).CrossRefGoogle Scholar
  7. 7.
    Y.Q. Zhang, Z. Li, T. Ling, S.A. Kulinich, and X.W. Du, J. Mater. Chem. A 4, 8700 (2016).CrossRefGoogle Scholar
  8. 8.
    M.B. Gumpu, G.K. Mani, N. Nesakumar, A.J. Kulandaisamy, K.J. Babu, and J.B.B. Rayappan, Sens. Actuators B Chem. 234, 426 (2016).CrossRefGoogle Scholar
  9. 9.
    N. Rajesh, J.C. Kannan, T. Krishnakumar, A. Bonavita, S.G. Leonardi, and G. Neri, Ceram. Int. 41, 14766 (2015).CrossRefGoogle Scholar
  10. 10.
    K. Sankarasubramanian, P. Soundarrajan, K. Sethuraman, and K. Ramamurthi, Mater. Sci. Semicond. Process. 40, 879 (2015).CrossRefGoogle Scholar
  11. 11.
    N. Rajesh, J.C. Kannan, S.G. Leonardi, G. Neri, and T. Krishnakumar, J. Alloys Compd. 607, 54 (2014).CrossRefGoogle Scholar
  12. 12.
    D. Sathya Raj, T. Krishnakumar, R. Jayaprakash, T. Prakash, G. Leonardi, and G. Neri, Sens. Actuators B Chem. 171–172, 853 (2012).CrossRefGoogle Scholar
  13. 13.
    R.R. Salunkhe, D.S. Dhawale, U.M. Patil, and C.D. Lokhande, Sens. Actuators B Chem. 136, 39 (2009).CrossRefGoogle Scholar
  14. 14.
    R.R. Salunkhe, D.S. Dhawale, D.P. Dubal, and C.D. Lokhande, Sens. Actuators B Chem. 140, 86 (2009).CrossRefGoogle Scholar
  15. 15.
    R.R. Salunkhe, V.R. Shinde, and C.D. Lokhande, Sens. Actuators B Chem. 133, 296 (2008).CrossRefGoogle Scholar
  16. 16.
    T. Minami, MRS Bull. 25, 38 (2000).CrossRefGoogle Scholar
  17. 17.
    S.A. Khan, S. Azam, F.A. Shah, and B. Amin, Opt. Mater. (Amst). 47, 372 (2015).CrossRefGoogle Scholar
  18. 18.
    R. Chaurasiya and A. Dixit, J. Magn. Magn. Mater. 469, 279 (2018).CrossRefGoogle Scholar
  19. 19.
    A.A. Dakhel, Solid State Sci. 13, 1000 (2011).CrossRefGoogle Scholar
  20. 20.
    R. Maity and K.K. Chattopadhyay, Sol. Energy Mater. Sol. Cells 90, 597 (2006).CrossRefGoogle Scholar
  21. 21.
    S.J. Helen, S. Devadason, M. Haris, and T. Mahalingam, J. Electron. Mater. 47, 2439 (2018).CrossRefGoogle Scholar
  22. 22.
    A.A. Dakhel, Phys. Status Solidi Appl. Mater. Sci. 205, 2704 (2008).CrossRefGoogle Scholar
  23. 23.
    A.J. Lu, R.Q. Zhang, and S.T. Lee, Appl. Phys. Lett. 91, 263107 (2007).CrossRefGoogle Scholar
  24. 24.
    K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim, K.S. Kim, J.H. Ahn, P. Kim, J.Y. Choi, and B.H. Hong, Nature 457, 706 (2009).CrossRefGoogle Scholar
  25. 25.
    P. Johari and V.B. Shenoy, ACS Nano 6, 5449 (2012).CrossRefGoogle Scholar
  26. 26.
    W. Kohn and L.J. Sham, Phys. Rev. 140, 1133 (1965).CrossRefGoogle Scholar
  27. 27.
    A.K. Rajagopal and J. Callaway, Phys. Rev. B 7, 1912 (1973).CrossRefGoogle Scholar
  28. 28.
    P. Blaha, and G. Madsen, WIEN2k (2016).Google Scholar
  29. 29.
    J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 78, 1396 (1997).CrossRefGoogle Scholar
  30. 30.
    F. Tran and P. Blaha, Phys. Rev. Lett. 102, 5 (2009).Google Scholar
  31. 31.
    H.J. Monkhorst and J.D. Pack, Phys. Rev. B 13, 5188 (1976).CrossRefGoogle Scholar
  32. 32.
    S. Baroni, S. De Gironcoli, A.D. Corso, S. Scuola, I. Superiore, I. Istituto, F. Materia, I. Trieste, and P. Giannozzi, Rev. Mod. Phys. 73, 515 (2001).CrossRefGoogle Scholar
  33. 33.
    P.E. Blöchl, O. Jepsen, and O.K. Andersen, Phys. Rev. B 49, 16223 (1994).CrossRefGoogle Scholar
  34. 34.
    B.P.X. Ma, J. Hu, Nanotechnology 28, 355201 (2016).Google Scholar
  35. 35.
    H.L. Zhuang and R.G. Hennig, Appl. Phys. Lett. 103, 212102 (2013).CrossRefGoogle Scholar
  36. 36.
    H. Zheng, X. Bin Li, N. K. Chen, S. Y. Xie, W. Q. Tian, Y. Chen, H. Xia, S. B. Zhang, and H. B. Sun, Phys. Rev. B Condens. Matter Mater. Phys. 92, 1 (2015).Google Scholar
  37. 37.
    R. Chaurasiya, A. Dixit, and R. Pandey, Superlattices Microstruct. 122, 268 (2018).CrossRefGoogle Scholar
  38. 38.
    W. Kiefer, C. Gould, and C. Ru, Indian J. Pure Appl. Phys. 46, 561 (2008).Google Scholar
  39. 39.
    A. Delin, P. Ravindran, O. Eriksson, and J.M. Wills, Int. J. Quantum Chem. 69, 349 (1998).CrossRefGoogle Scholar
  40. 40.
    F. Wooten, Optical Properties of Solids (Academic Press, New York, 1972).Google Scholar
  41. 41.
    D.R. Penn, Phys. Rev. 128, 2093 (1962).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Department of Physics and Center for Solar EnergyIndian Institute of Technology JodhpurJodhpurIndia

Personalised recommendations