Advertisement

Cu(Zn,Sn)(S,Se)2 Solar Cells with a Nanocomposite Window Layer Produced by Totally Nonvacuum Methods

  • Thị Thu Hien Nguyen
  • Anh Tuan Pham
  • Duc Huy Tran
  • Viet Anh Dung Dang
  • Ngoc Phan Vu
  • Huu Dung Nguyen
  • Thanh Tung Duong
  • Duy Cuong NguyenEmail author
Progress and Challenges for Emerging Integrated Energy Modules
  • 8 Downloads
Part of the following topical collections:
  1. Progress and Challenges for Emerging Integrated Energy Modules

Abstract

The authors report the optical and electrical properties of nanocomposite films of Ag-nanowires (Ag-NWs) and indium-tin oxide nanoparticles (ITO-NPs) and their application in window electrodes in solar cells. We found that the electrical and optical properties of Ag-NWs/ITO-NPs nanocomposite films strongly depend on the thickness. Nanocomposite film with 1000 nm thickness was observed to be most suitable for application as window electrodes in Cu(Zn,Sn)(S,Se)2 solar cells. The parameters of the cell using a 1000 nm-thick nanocomposite window electrode are short-circuit current density of 24.2 mA/cm2, open-circuit voltage of 0.32 V, fill factor of 0.44, and conversion efficiency of 3.37%. The results demonstrated an economical pathway for fabricating solar cells without vacuum methods.

Keywords

CZTSSe solar cells nanocomposite Ag nanowire ITO nanoparticles nonvacuum methods 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This research is funded by the Vietnam National Foundation for Science and Technology Development (NAFOSTED) under Grant Number 103.02-2017.45.

Supplementary material

11664_2019_7147_MOESM1_ESM.pdf (2.6 mb)
Supplementary material 1 (PDF 2660 kb)

References

  1. 1.
    K. Tanaka, M. Oonuki, N. Moritake, and H. Uchiki, Sol. Energy Mater. Sol. Cells 93, 583 (2009).CrossRefGoogle Scholar
  2. 2.
    Q. Guo, G.M. Ford, W.C. Yang, B.C. Walker, E.A. Stach, H.W. Hillhouse, and R. Agrawal, J. Am. Chem. Soc. 132, 17384 (2010).CrossRefGoogle Scholar
  3. 3.
    G. Larramona, S. Bourdais, A. Jacob, C. Chone, T. Muto, Y. Cuccaro, B. Delatouche, C. Moisan, D. Pere, and G. Dennler, J. Phys. Chem. Lett. 5, 3763 (2014).CrossRefGoogle Scholar
  4. 4.
    T.K. Todorov, J. Tang, S. Bag, O. Gunawan, T. Gokmen, Y. Zhu, and D.B. Mitzi, Adv. Energy Mater. 3, 34 (2013).CrossRefGoogle Scholar
  5. 5.
    S. Chen, X.G. Gong, A. Walsh, and S.-H. Wei, Appl. Phys. Lett. 94, 041903 (2009).CrossRefGoogle Scholar
  6. 6.
    Y.P. Lin, T.E. Hsieh, Y.C. Chen, and K.P. Huang, Sol. Energy Mater. Sol. Cells 162, 55 (2017).CrossRefGoogle Scholar
  7. 7.
    J.K. Kim, S.H. Park, S.W. Ryu, J.H. Oh, and B.H. Shin, Prog. Photovolt. Res. Appl. 25, 308 (2017).CrossRefGoogle Scholar
  8. 8.
    ThH Nguyen, W. Septina, S. Fujikawa, F. Jiang, T. Harada, and S. Ikeda, RSC Adv. 5, 77565 (2015).CrossRefGoogle Scholar
  9. 9.
    X. Lin, J. Kavalakkatt, M.Ch. Lux-Steiner, and A. Ennaoui, Adv. Sci. 2, 1500028 (2015).CrossRefGoogle Scholar
  10. 10.
    W. Wang, M.T. Winkler, O. Gunawan, T. Gokmen, T.K. Todorov, Y. Zhu, and D.B. Mitzi, Adv. Energy Mater. 4, 1301465 (2014).CrossRefGoogle Scholar
  11. 11.
    I. Repins, C. Beall, N. Vora, C. DeHart, D. Kuciauskas, P. Dippo, B. To, J. Mann, W.C. Hsu, A. Goodrich, and R. Noufi, Sol. Energy Mater. Sol. Cells 101, 154 (2012).CrossRefGoogle Scholar
  12. 12.
    T.K. Todorov, K.B. Reuter, and D.B. Mitzi, Adv. Energy Mater. 22, 156 (2010).CrossRefGoogle Scholar
  13. 13.
    C. Steinhagen, M.G. Panthani, V. Akhavan, B. Goodfellow, B. Koo, and B.A. Korgel, J. Am. Chem. Soc. 131, 12554 (2009).CrossRefGoogle Scholar
  14. 14.
    K. Woo, Y. Kim, and J. Moon, Energy Environ. Sci. 5, 5340 (2012).CrossRefGoogle Scholar
  15. 15.
    W. Yang, H.S. Duan, B. Bob, H. Zhou, B. Lei, C.H. Chung, S.H. Li, W.W. Hou, and Y. Yang, Adv. Mater. 24, 6323 (2012).CrossRefGoogle Scholar
  16. 16.
    K.E. Lee, M.S. Wang, E.J. Kim, and S.H. Hahn, Curr. Appl. Phys. 9, 683 (2009).CrossRefGoogle Scholar
  17. 17.
    Z. Chen, W. Li, R. Li, Y. Zhang, G. Xu, and H. Cheng, Langmuir 29, 13836 (2013).CrossRefGoogle Scholar
  18. 18.
    D.C. Nguyen, S. Ito, and D.V.A. Dung, J. Alloys Compd. 632, 676 (2015).CrossRefGoogle Scholar
  19. 19.
    E.C. Garnett, W. Cai, J.J. Cha, F. Mahmood, S.T. Connor, M.G. Christoforo, Y. Cui, M.D. McGehee, and M.L. Brongersma, Nat. Mater. 11, 241 (2012).CrossRefGoogle Scholar
  20. 20.
    L. Hu, H.S. Kim, J.Y. Lee, P. Peumans, and Y. Cui, ACS Nano 4, 2955 (2010).CrossRefGoogle Scholar
  21. 21.
    H. Lu, D. Zhang, X. Ren, J. Liu, and W.C.H. Choy, ACS Nano 8, 10980 (2014).CrossRefGoogle Scholar
  22. 22.
    Joint committee for powder diffraction standards, No.26-0575, Mater. Res. Bull. 9, 645 (1974)Google Scholar
  23. 23.
    H.W. Lehmann and M. Robbins, J. Appl. Phys. 37, 1389 (1966).CrossRefGoogle Scholar
  24. 24.
    Y. Iwadate, K. Kawamura, K. Igarashi, and J. Mochinaga, J. Phys. Chem. 86, 5205 (1982).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Thị Thu Hien Nguyen
    • 1
    • 4
  • Anh Tuan Pham
    • 4
  • Duc Huy Tran
    • 2
  • Viet Anh Dung Dang
    • 3
  • Ngoc Phan Vu
    • 1
  • Huu Dung Nguyen
    • 1
  • Thanh Tung Duong
    • 1
  • Duy Cuong Nguyen
    • 1
    Email author
  1. 1.Nano Optoelectronics Laboratory, Advanced Institute for Science and TechnologyHanoi University of Science and TechnologyHanoiVietnam
  2. 2.School of Materials Science and EngineeringHanoi University of Science and TechnologyHanoiVietnam
  3. 3.School of Chemical EngineeringHanoi University of Science and TechnologyHanoiVietnam
  4. 4.Faculty of Power SystemElectric Power UniversityHanoiVietnam

Personalised recommendations