Global Analysis of Influence of Contacts on Heusler-Based Thermoelectric Modules

  • G. RoyEmail author
  • C. Van Der Rest
  • S. Heymans
  • E. Quintin
  • V. Dupont
  • J. P. Erauw
  • A. Schmitz
  • P. J. Jacques
Progress and Challenges for Emerging Integrated Energy Modules
Part of the following topical collections:
  1. Progress and Challenges for Emerging Integrated Energy Modules


Interest in waste heat recovery using thermoelectricity has increased in recent decades. To date, most such research and development has focused on high-performance and/or low-cost materials. However, for practical applications, modules based on these materials are needed. This work presents the development and optimization of modules based on the low-cost Fe2VAl Heusler compound. It depicts a global analysis of the assembly in terms of the microstructure of the joint, the contact resistances, and the module performance. Based on this analysis, a generic method for developing joining solutions for new thermoelectric materials is proposed. Using this method, the diffusion bonding technique leading to electrical contact resistance of 5 × 10−9 Ω m2 is highlighted and a thermoelectric module with power density above 500 W m−2 for a temperature difference of 200 K developed.


Thermoelectric module Heusler electrical contact thermal contact 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors acknowledge support from the Walloon Region through funding of the GTherm project. The European Regional Development Fund (ERDF) and Wallonia are also gratefully acknowledged for financial support of the research project (T-REX– EQUIDER - ECV12020010884F-830033) in the frame of the ‘‘Convergence programme.’’


  1. 1.
    W. Liu, Q. Jie, H.S. Kim, and Z. Ren, Acta Mater. 87, 357 (2015).CrossRefGoogle Scholar
  2. 2.
    D.M. Rowe and G. Min, IEE Proc. A 143, 351 (1996).Google Scholar
  3. 3.
    W. Liu, H. Wang, L. Wang, X. Wang, G. Joshi, G. Chen, and Z. Ren, J. Mater. Chem. A 42, 13093 (2013).CrossRefGoogle Scholar
  4. 4.
    J. de Boor, C. Gloanec, H. Kolb, R. Sottong, P. Ziolkowski, and E. Müller, J. Alloys Compd. 632, 348 (2015).CrossRefGoogle Scholar
  5. 5.
    D. Zhao, H. Geng, and L. Chen, Int. J. Appl. Ceram. Tech. 9, 733 (2012).CrossRefGoogle Scholar
  6. 6.
    P. Ziolkowski, P. Poinas, J. Leszczynski, G. Karpinski, and E. Müller, J. Electron. Mater. 39, 1934 (2010).CrossRefGoogle Scholar
  7. 7.
    R. Bjørk, J. Electron. Mater. 44, 2869 (2015).CrossRefGoogle Scholar
  8. 8.
    B.V.K. Reddy, M. Barry, J. Li, and M.K. Chyu, J. Heat Transf. 136, 101401 (2014).CrossRefGoogle Scholar
  9. 9.
    D. Ebling, K. Bartholomé, M. Bartel, and M. Jägle, J. Electron. Mater. 39, 1376 (2010).CrossRefGoogle Scholar
  10. 10.
    O. Högblom and R. Andersson, J. Electron. Mater. 43, 2247 (2014).CrossRefGoogle Scholar
  11. 11.
    H. Fateh, C.A. Baker, M.J. Hall, and L. Shi, Appl. Energy 129, 373 (2014).CrossRefGoogle Scholar
  12. 12.
    P.H. Ngan, N. Van Nong, L.T. Hung, B. Balke, L. Han, E.M.J. Hedegaard, S. Linderoth, and N. Pryds, J. Electron. Mater. 45, 594 (2016).CrossRefGoogle Scholar
  13. 13.
    G. Roy, E. Matagne, and P.J. Jacques, J. Electron. Mater. 42, 1781 (2013).CrossRefGoogle Scholar
  14. 14.
    Y. Nishino, H. Kato, M. Kato, and U. Mizutani, Phys. Rev. B 63, 233303 (2001).CrossRefGoogle Scholar
  15. 15.
    Y. Nishino and Y. Tamada, J. Appl. Phys. 115, 123707 (2014).CrossRefGoogle Scholar
  16. 16.
    H. Miyazaki, S. Tanaka, N. Ide, K. Soda, and Y. Nishino, Mater. Res. Express 1, 015901 (2014).CrossRefGoogle Scholar
  17. 17.
    M. Mikami, Y. Kinemuchi, K. Ozaki, Y. Terazawa, and T. Takeuchi, J. Appl. Phys. 111, 093710 (2012).CrossRefGoogle Scholar
  18. 18.
    K. Renard, A. Mori, Y. Yamada, S. Tanaka, H. Miyazaki, and Y. Nishino, J. Appl. Phys. 115, 033707 (2014).CrossRefGoogle Scholar
  19. 19.
    C. van der Rest, Ph.D. Thesis, Université catholique de Louvain (2015)Google Scholar
  20. 20.
    M. Mikami, K. Kobayashi, T. Kawada, K. Kubo, and N. Uchiyama, J. Electron. Mater. 38, 1121 (2009).CrossRefGoogle Scholar
  21. 21.
    M. Mikami, M. Mizoshiri, K. Ozaki, H. Takazawa, A. Yamamoto, Y. Terazawa, and T. Takeuchi, J. Electron. Mater. 43, 1922 (2014).CrossRefGoogle Scholar
  22. 22.
    Weidler, J. D., Burg, R. D., Decker, J. J., Constable, J. H, in Proceedings of Electronic Components and Technology Conference (2000), pp. 906–913Google Scholar
  23. 23.
    R.K. Shiue, Y. Li, S.K. Wu, and L.M. Wu, Metall. Mater. Trans. A 41, 2836 (2010).CrossRefGoogle Scholar
  24. 24.
    M. Brochu, M. Pugh, and R.A.L. Drew, Intermetallics 12, 289 (2004).CrossRefGoogle Scholar
  25. 25.
    G.Y. Huang, C.T. Hsu, and D.J. Yao, J. Electron. Mater. 43, 2337 (2014).CrossRefGoogle Scholar
  26. 26.
    C.T. Hsu, G.Y. Huang, H.S. Chu, B. Yu, and D.J. Yao, Appl. Energy 88, 5173 (2011).CrossRefGoogle Scholar
  27. 27.
    M. Freunek, M. Müller, T. Ungan, W. Walker, and L.M. Reindl, J. Electron. Mater. 38, 1214 (2009).CrossRefGoogle Scholar
  28. 28.
    H. Okamoto, M. Schlesigner, and E. Mueller, ASM Handbook Volume 3: Alloy Phase Diagrams (Materials Park: ASM International, 1992).Google Scholar
  29. 29.
    C.S. Lue, C.F. Chen, J.Y. Lin, Y.T. Yu, and Y.K. Kuo, Phys. Rev. B 75, 064204 (2007).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Institute of Mechanics, Materials and Civil Engineering, Materials and Process Engineering (IMAP)Université catholique de LouvainLouvain-La-NeuveBelgium
  2. 2.Belgian Ceramic Research Center (BCRC)MonsBelgium
  3. 3.CRM GroupLiègeBelgium

Personalised recommendations