Advertisement

Magnetic Properties of the Double Perovskite Bi2FeCrO6

  • S. IdrissiEmail author
  • H. Labrim
  • S. Ziti
  • R. Khalladi
  • N. El Mekkaoui
  • I. El Housni
  • S. Mtougui
  • L. BahmadEmail author
Article
  • 6 Downloads

Abstract

The double Perovskite Bi2FeCrO6 (BFCO), is a variant of the well-known and largely studied perovskite BiFeO3. These perovskites (BFCO) are theoretically and experimentally studied because of their strong ferro-electricity and high magnetic Curie temperature beyond the room temperature. This manuscript presents a theoretical model describing and predicting the double perovskite Bi2FeCrO6 material, in order to simulate its magnetic properties. For this purpose, we use the Monte Carlo method under the Metropolis algorithm. Also, we present the behavior of the magnetizations and the susceptibilities as a function of the temperature as well as different physical parameters, such as the coupling exchange interactions, the crystal field and the external magnetic field. On the other hand, we presented and discussed the ground state phase diagrams by exploring the different stable configurations in different planes of the physical parameters. To complete this study, we established the magnetic hysteresis loops of the double perovskite Bi2FeCrO6 compound, for different physical parameters.

Keywords

Double perovskite Bi2FeCrO6 Monte Carlo magnetic properties hysteresis loops 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

References

  1. 1.
    A.W. Sleight, J. Longo, and R. Ward, Inorg. Chem. 1, 246 (1962).Google Scholar
  2. 2.
    A.W. Sleight and R. Ward, Inorg. Chem. 3, 292 (1964).CrossRefGoogle Scholar
  3. 3.
    H.-T. Jeng and G.Y. Guo, Phys. Rev. B 67, 094438 (2003).CrossRefGoogle Scholar
  4. 4.
    D.P. Rai, A. Shankar, M.P. Ghimire, and R.K. Sandeep, Comput. Mater. Sci. 101, 313 (2015).CrossRefGoogle Scholar
  5. 5.
    B. Gray, N.L. Ho, J. Liu, J. Chakhalian, and J.W. Freeland, Appl. Phys. Lett. 97, 013105 (2010).CrossRefGoogle Scholar
  6. 6.
    C.M. Bonilla, D.A. Landínez Téllez, J. Arbey Rodríguez, E. Vera López, and J. Roa-Rojas, Physica B 398, 208 (2007).CrossRefGoogle Scholar
  7. 7.
    Y. Zhang, V. Ji, and K.-W. Xu, Mater. Chem. Phys. 136, 570 (2012).CrossRefGoogle Scholar
  8. 8.
    M. Fiebig, J. Phys. D 38, R123 (2005).CrossRefGoogle Scholar
  9. 9.
    J.F. Scott, Nat. Mater. 6, 256 (2007).CrossRefGoogle Scholar
  10. 10.
    S. Idrissi, R. Khalladi, S. Mtougui, S. Ziti, H. Labrim, I. El Housni, N. El Mekkaoui, and L. Bahmad, Accepted in Phys. A. (2019). https://doi.org/10.1016/j.physa.2019.03.004
  11. 11.
    J. Cheng and Z.Q. Yang, Phys. Status. Solid. B 243, 1151 (2006).CrossRefGoogle Scholar
  12. 12.
    Z. Szotek, W.M. Temmerman, A. Svane, L. Petit, and H. Winter, Phys. Rev. B 68, 104411 (2003).CrossRefGoogle Scholar
  13. 13.
    S. Yahyaoui and H.T. Diep, Phys. Lett. A 39, 3212 (2016).CrossRefGoogle Scholar
  14. 14.
    G.D. Ngantso, Y. El Amraoui, A. Benyoussef, and A. El Kenz, J. Magn. Magn. Mater. 423, 337 (2017).CrossRefGoogle Scholar
  15. 15.
    A. Jabar, R. Masrour, A. Benyoussef, and M. Hamedoun, Chem. Phys. Lett. 670, 16 (2017).CrossRefGoogle Scholar
  16. 16.
    G. Dimitri Ngantso, A. Benyoussef, and A. El Kenz, Curr. Appl. Phys. 2, 211 (2016).CrossRefGoogle Scholar
  17. 17.
    P. Sanyal, A. Halder, L. Si, M. Wallerberger, K. Held, and T. Saha-Dasgupta, Phys. Rev. B 94, 035132 (2016).CrossRefGoogle Scholar
  18. 18.
    A. Nid-bahami, A. El Kenz, A. Benyoussef, L. Bahmad, M. Hamedoun, and H. El, J. Magn. Magn. Mat. 417, 258 (2016).CrossRefGoogle Scholar
  19. 19.
    C.E. Deluque Toro, M. Jairo Arbey Rodríguez, D.A. Landínez Téllez, N.O. Moreno Salazar, and J. Roa-Rojas, Physica. B Condens. Matter. 455, 1 (2014).CrossRefGoogle Scholar
  20. 20.
    Towfiq Ahmed, Aiping Chen, Dmitry A. Yarotski, Stuart A. Trugman, Quanxi Jia, and Jian-Xin Zhu, APL Mater. 5, 035601 (2017).CrossRefGoogle Scholar
  21. 21.
    L.B. Drissi, F.Z. Ramadan, and N.B.-J. Kanga, Chem Phys Lett 659, 148 (2016).CrossRefGoogle Scholar
  22. 22.
    P. Baettig, C. Ederer, and N.A. Spaldin, Phys. Rev. B 72, 214105 (2005).CrossRefGoogle Scholar
  23. 23.
    N.A. Spaldin, Appl. Phys. Lett. 86, 012505 (2005).Google Scholar
  24. 24.
    Z.-W. Song and B.-G. Liu, Chin. Phys. B 22, 047506 (2013)Google Scholar
  25. 25.
    R. Nechache, C.V. Cojocaru, C. Harnagea, C. Nauenheim, M. Nicklaus, A. Ruediger, F. Rosei, and A. Pignolet, Adv. Mater. 23, 1724 (2011).CrossRefGoogle Scholar
  26. 26.
    R. Nechache, C. Harnagea, L.P. Carignan, D. Ménard, and A. Pignolet, Integr. Ferroelectr. 101, 152 (2008)Google Scholar
  27. 27.
    R. Traversa, A. Ruediger, A. Pignolet, and F. Rosei, Appl. Phys. Lett. 98, 202902 (2011).CrossRefGoogle Scholar
  28. 28.
    R. Nechache, C. Harnagea, and A. Pignolet, J. Phys.-Condens. Mat. 24, 096001 (2012).CrossRefGoogle Scholar
  29. 29.
    C. Nechache, A. Harnagea, F. Pignolet, T. Normandin, L.-P. Veres, and D.M. Carignan, Appl. Phys. Lett. 89, 102902 (2006).CrossRefGoogle Scholar
  30. 30.
    R. Nechache and F. Rosei, J. Solid State Chem. 189, 13 (2012).CrossRefGoogle Scholar
  31. 31.
    Z. Zhang, P. Wu, L. Chen, and J.L. Wang, Appl. Phys. Lett. 96, 232906 (2010).CrossRefGoogle Scholar
  32. 32.
    L. You, Z.H. Chen, X. Zou, H. Ding, W.G. Chen, L. Chen, G.L. Yuan, and J.L. Wang, ACS Nano 6, 5388 (2012).CrossRefGoogle Scholar
  33. 33.
    R. Ranjith, W. Prellier, J.W. Cheah, J. Wang, and T. Wu, Appl. Phys. Lett. 92, 232905 (2008).CrossRefGoogle Scholar
  34. 34.
    S.X. Wu, X. Luo, S. Turner, H.Y. Peng, W.N. Lin, J.F. Ding, A. David, B. Wang, G.V. Tendeloo, J.L. Wang, and T. Wu, Phys. Rev. X 3, 041027 (2013).Google Scholar
  35. 35.
    J. Wang, B.J. Neaton, H. Zheng, V. Nagarajan, S.B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D.G. Schlom, U.V. Waghmare, N.A. Spaldin, K.M. Rabe, M. Wuttig, and R. Ramesh, Science 299, 1719 (2003).CrossRefGoogle Scholar
  36. 36.
    R. Seshadri and N.A. Hill, Chem. Mater. 13, 2892 (2001).CrossRefGoogle Scholar
  37. 37.
    R. Nechache, C. Harnagea, S. Li, L. Cardenas, W. Huang, J. Chakrabartty, and F. Rosei, Nat. Photonics 9, 61 (2015).CrossRefGoogle Scholar
  38. 38.
    P. Baettig and N.A. Spaldin, Appl. Phys. Lett. 86, 012505 (2005).CrossRefGoogle Scholar
  39. 39.
    R. Nechache, C. Harnagea, S. Licoccia, E. Traversa, A. Ruediger, D.D. Fong, G.B. Stephenson, S.K. Streiffer, J.A. Eastman, O. Auciello, V. Pignolet, and F. Rosei, Appl. Phys. Lett. 98, 202902 (2011).CrossRefGoogle Scholar
  40. 40.
    Y.X. Yang, W.T. Xu, X.J. Xu, Y.J. Wang, G.L. Yuan, Y.P. Wang, Y.S. Kim, D.H. Kim, J.D. Kim, Y.J. Chang, T.W. Noh, J.H. Kong, and K.Z.G. Liu, J. Appl. Phys. 119, 044102 (2016).CrossRefGoogle Scholar
  41. 41.
    M. Arejdal, A. Jabar, L. Bahmad, and A. Benyoussef, Superlattices Microstruct. 101, 329 (2017).CrossRefGoogle Scholar
  42. 42.
    H. Labrim, A. Jabar, A. Belhaj, S. Ziti, L. Bahmad, L. Laânab, and A. Benyoussef, J. Alloy. Compd. 641, 37 (2015).CrossRefGoogle Scholar
  43. 43.
    M. El Yadari, L. Bahmad, A. El Kenz, and A. Benyoussef, J. Alloy. Compd. 579, 86 (2013).CrossRefGoogle Scholar
  44. 44.
    S. Mtougui, R. Khalladi, N. El MekkaouiI, I. El Housni, S. Idrissi, L. Bahmad, S. Ziti, H. Labrim, Comput. Condens. Matter. 17, e00329 (2018)Google Scholar
  45. 45.
    L. Bahmad, A. Benyoussef, and A. El Kenz, J. Magn. Magn. Mater. 320, 397 (2008).CrossRefGoogle Scholar
  46. 46.
    R. Khalladi, S. Mtougui, S. Idrissi, L. Bahmad, S. Ziti, and H. Labrim, Chin. J. Phys. 56, 2947 (2018).CrossRefGoogle Scholar
  47. 47.
    K. Momma and F. Izumi, J. Appl. Crystallogr. 44, 1272 (2011).CrossRefGoogle Scholar
  48. 48.
    S. Zhe-Wen and L. Bang-Gui, arXiv:1210.5981v2 [cond-mat.mtrl-sci] 24 Oct (2012)
  49. 49.
    M. Oumarou, E. Noura, N. Mohamedou, M.O. Ne, and N. Aknin, Int. J. Sci. Eng. Res. 8, 418 (2017).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Laboratoire de la Matière Condensée et des Sciences Interdisciplinaires (LaMCScI), Faculty of SciencesMohammed V University of RabatRabatMorocco
  2. 2.USM/DERS/Centre National de l’Energiedes Sciences et des Techniques Nucléaires (CNESTEN)RabatMorocco
  3. 3.Intelligence Artificial and Security of Systems, Faculty of SciencesMohammed V University of RabatRabatMorocco

Personalised recommendations