Investigation on Na Acceptor Level in p-Type Na-Doped ZnMgO Thin Films Prepared by Pulsed Laser Deposition

  • Jiyu Huang
  • Cong Chen
  • Haiping HeEmail author
  • Chuhan Sha
  • Zhizhen YeEmail author


Na-doped ZnMgO films have been deposited on quartz substrates by pulsed laser deposition and the effect of the oxygen pressure on their electrical properties investigated. The film deposited under optimal conditions exhibited p-type conductivity with representative hole concentration of 1.2 × 1015 cm−3, Hall mobility of 8.3 cm2 V−1 s−1, and resistivity of 6.7 × 102 Ω cm. Temperature-dependent Hall measurements were used to confirm the p-type conductivity and determine the Na-related acceptor level in the ZnMgO films, which was estimated to be 483 ± 21 meV. Temperature-dependent photoluminescence revealed an acceptor level of about 460 meV, close to the result determined by Hall measurements. The Na acceptor is deeper in ZnMgO than in ZnO due to the enlarged bandgap.


ZnMgO film p-type doping acceptor level photoluminescence 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the National Natural Science Foundation of China under Grant Nos. 91333203 and 51372223, and the Fundamental Research Funds for the Central Universities under Grant No. 2017FZA4007.


  1. 1.
    Z.Z. Ye, J.G. Lu, Y.Z. Zhang, Y.J. Zeng, L.L. Chen, F. Zhuge, G.D. Yuan, H.P. He, L.P. Zhu, J.Y. Huang, and B.H. Zhao, Appl. Phys. Lett. 91, 3 (2007).Google Scholar
  2. 2.
    L. Cheng, Y.B. Zheng, Q. Xu, and Y. Qin, Adv. Opt. Mater. 5, 1600623 (2017).CrossRefGoogle Scholar
  3. 3.
    K.C. Xu, J. Wu, C.F. Tan, G.W. Ho, A. Wei, and M.H. Hong, Nanoscale 9, 11574 (2017).CrossRefGoogle Scholar
  4. 4.
    F.R. Fan, W. Tang, and Z.L. Wang, Adv. Mater. 28, 4283 (2016).CrossRefGoogle Scholar
  5. 5.
    X.L. Dai, Z.X. Zhang, Y.Z. Jin, Y. Niu, H.J. Cao, X.Y. Liang, L.W. Chen, J.P. Wang, and X.G. Peng, Nature 515, 96 (2014).CrossRefGoogle Scholar
  6. 6.
    U. Ozgur, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Dogan, V. Avrutin, S.J. Cho, and H. Morkoc, J. Appl. Phys. 98, 041301 (2005).CrossRefGoogle Scholar
  7. 7.
    D.C. Look, Mater. Sci. Eng. B 80, 383 (2001).CrossRefGoogle Scholar
  8. 8.
    K. Nakahara, S. Akasaka, H. Yuji, K. Tamura, T. Fujii, Y. Nishimoto, D. Takamizu, A. Sasaki, T. Tanabe, H. Takasu, H. Amaike, T. Onuma, S.F. Chichibu, A. Tsukazaki, A. Ohtomo, and M. Kawasaki, Appl. Phys. Lett. 97, 013501 (2010).CrossRefGoogle Scholar
  9. 9.
    V. Avrutin, D.J. Silversmith, and H. Morkoc, Proc. IEEE 98, 1269 (2010).CrossRefGoogle Scholar
  10. 10.
    S.B. Zhang, S.H. Wei, and A. Zunger, Phys. Rev. B 63, 075205 (2001).CrossRefGoogle Scholar
  11. 11.
    Y.F. Yan, J.B. Li, S.H. Wei, and M.M. Al-Jassim, Phys. Rev. Lett. 98, 135506 (2007).CrossRefGoogle Scholar
  12. 12.
    Y.J. Zeng, Z.Z. Ye, W.Z. Xu, B. Liu, Y. Che, L.P. Zhu, and B.H. Zhao, Mater. Lett. 61, 41 (2007).CrossRefGoogle Scholar
  13. 13.
    K.K. Kim, H.S. Kim, D.K. Hwang, J.H. Lim, and S.J. Park, Appl. Phys. Lett. 83, 63 (2003).CrossRefGoogle Scholar
  14. 14.
    Y.R. Ryu, T.S. Lee, and H.W. White, Appl. Phys. Lett. 83, 87 (2003).CrossRefGoogle Scholar
  15. 15.
    X.H. Pan, W. Guo, Z.Z. Ye, B. Liu, Y. Che, H.P. He, and X.Q. Pan, J. Appl. Phys. 105, 113516 (2009).CrossRefGoogle Scholar
  16. 16.
    Y.J. Zeng, Z.Z. Ye, W.Z. Xu, D.Y. Li, J.G. Lu, L.P. Zhu, and B.H. Zhao, Appl. Phys. Lett. 88, 062107 (2006).CrossRefGoogle Scholar
  17. 17.
    W. Liu, F.X. Xiu, K. Sun, Y.H. Xie, K.L. Wang, Y. Wang, J. Zou, Z. Yang, and J.L. Liu, J. Am. Chem. Soc. 132, 2498 (2010).CrossRefGoogle Scholar
  18. 18.
    S.S. Lin, J.G. Lu, Z.Z. Ye, H.P. He, X.Q. Gu, L.X. Chen, J.Y. Huang, and B.H. Zhao, Solid State Commun. 148, 25 (2008).CrossRefGoogle Scholar
  19. 19.
    L.Q. Zhang, Y.Z. Zhang, Z.Z. Ye, S.S. Lin, B. Lu, H.P. He, L.X. Chen, J.G. Lu, J. Jiang, K.W. Wu, J.Y. Huang, and L.P. Zhu, Appl. Phys. A 106, 191 (2012).CrossRefGoogle Scholar
  20. 20.
    Z. Ye, H. He, and L. Jiang, Nano Energy 52, 527 (2018).CrossRefGoogle Scholar
  21. 21.
    P.T. Neuvonen, L. Vines, V. Venkatachalapathy, A. Zubiaga, F. Tuomisto, A. Hallen, B.G. Svensson, and A.Y. Kuznetsov, Phys. Rev. B 84, 205202 (2011).CrossRefGoogle Scholar
  22. 22.
    H.H. Zhang, X.H. Pan, Y. Li, Z.Z. Ye, B. Lu, W. Chen, J.Y. Huang, P. Ding, S.S. Chen, H.P. He, J.G. Lu, L.X. Chen, and C.L. Ye, Appl. Phys. Lett. 104, 112106 (2014).CrossRefGoogle Scholar
  23. 23.
    J.C. Fan, K.M. Sreekanth, Z. Xie, S.L. Chang, and K.V. Rao, Prog. Mater. Sci. 58, 874 (2013).CrossRefGoogle Scholar
  24. 24.
    H. Sohrabpoor, M. Elyasi, M. Aldosari, and N.E. Gorji, Superlattices Microstruct. 97, 556 (2016).CrossRefGoogle Scholar
  25. 25.
    W. Yuan, L.P. Zhu, Z.Z. Ye, and X.Q. Gu, Appl. Surf. Sci. 256, 1452 (2009).CrossRefGoogle Scholar
  26. 26.
    R. Swapna and M.C.S. Kumar, Mater. Sci. Eng. B 178, 1032 (2013).CrossRefGoogle Scholar
  27. 27.
    A. Janotti and C.G. Van de Walle, Phys. Rev. B 76, 165202 (2007).CrossRefGoogle Scholar
  28. 28.
    H.P. He, Y. Zhu, M. Lei, and Z.Z. Ye, J. Appl. Phys. 122, 6 (2017).CrossRefGoogle Scholar
  29. 29.
    B.K. Meyer, J. Stehr, A. Hofstaetter, N. Volbers, A. Zeuner, and J. Sann, Appl. Phys. A 88, 119 (2007).CrossRefGoogle Scholar
  30. 30.
    B. Karthikeyan, C.S.S. Sandeep, T. Pandiyarajan, P. Venkatesan, and R. Philip, Appl. Phys. Lett. 95, 023118 (2009).CrossRefGoogle Scholar
  31. 31.
    N.S. Parmar and K.G. Lynn, Appl. Phys. Lett. 106, 022101 (2015).CrossRefGoogle Scholar
  32. 32.
    Y.F. Yang, Y.Z. Jin, H.P. He, Q.L. Wang, Y. Tu, H.M. Lu, and Z.Z. Ye, J. Am. Chem. Soc. 132, 13381 (2010).CrossRefGoogle Scholar
  33. 33.
    D.C. Reynolds, D.C. Look, and B. Jogai, J. Appl. Phys. 89, 6189 (2001).CrossRefGoogle Scholar
  34. 34.
    D.G. Thomas, J.J. Hopfield, and W.M. Augustyniak, Phys. Rev. 140, A202 (1965).CrossRefGoogle Scholar
  35. 35.
    A.K. Ojha, M. Srivastava, S. Kumar, R. Hassanein, J. Singh, M.K. Singh, and A. Materny, Vib. Spectrosc. 72, 90 (2014).CrossRefGoogle Scholar
  36. 36.
    J.Y. Sug, S.H. Lee, and S.Y. Choi, J. Korean Phys. Soc. 65, 1624 (2014).CrossRefGoogle Scholar
  37. 37.
    H. Liu, H. He, S. Li, K. Wu, J. Huang, Y. Lu, X. Pan, and Z. Ye, Appl. Phys. Express 5, 112102 (2012).CrossRefGoogle Scholar
  38. 38.
    A. Alkauskas, J.L. Lyons, D. Steiauf, and C.G. Van de Walle, Phys. Rev. Lett. 109, 267401 (2012).CrossRefGoogle Scholar
  39. 39.
    X.H. Pan, W. Guo, Z.Z. Ye, B. Liu, Y. Che, W. Tian, D.G. Schlom, and X.Q. Pan, Appl. Phys. Lett. 95, 3 (2009).Google Scholar
  40. 40.
    S.S. Lin, Z.Z. Ye, J.G. Lu, H.P. He, L.X. Chen, X.Q. Gu, J.Y. Huang, L.P. Zhu, and B.H. Zhao, J. Phys. D Appl. Phys. 41, 155114 (2008).CrossRefGoogle Scholar
  41. 41.
    C.H. Park, S.B. Zhang, and S.H. Wei, Phys. Rev. B 66, 073202 (2002).CrossRefGoogle Scholar
  42. 42.
    Z. Wang, H.B. Liu, H.P. He, J.Y. Huang, L.X. Chen, and Z.Z. Ye, Appl. Phys. A 118, 1229 (2015).CrossRefGoogle Scholar
  43. 43.
    M. Imura, N. Kato, N. Okada, K. Balakrishnan, M. Iwaya, S. Kamiyama, H. Amano, I. Akasaki, T. Noro, T. Takagi, and A. Bandoh, Phys. Status Solidi C 4, 2502 (2007).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, School of Materials Science and EngineeringZhejiang UniversityHangzhouPeople’s Republic of China

Personalised recommendations