Advertisement

Improving Material Quality of Polycrystalline GaN by Manipulating the Etching Time of a Porous AlN Template

  • M. Ikram Md Taib
  • N. Munirah
  • S. N. Waheeda
  • A. Shuhaimi
  • S. N. Sabki
  • N. ZainalEmail author
Article
  • 7 Downloads

Abstract

A porous template has been reported to reduce defect density and strains, and hence to improve the properties of gallium nitride (GaN) deposited on it. On the other hand, creating a porous aluminum nitride (AlN) template is challenging and, therefore, reports on it are scarce. In this work, the material quality of a polycrystalline GaN layer was improved by manipulating the etching time of the porous AlN template. The porous AlN template was fabricated for 5 and 30 min by ultraviolet (UV)-assisted sodium hydroxide (NaOH)-based electrochemical etching. The 5-min-etched porous AlN template exhibited a better uniformity of the pore distribution than the 30-min-etched porous AlN template. A non-porous AlN was also prepared for a comparison. All samples had gallium oxide (Ga2O3) inclusions in the polycrystalline GaN due to the oxide layer formation during the AlN template etching. However, such inclusions have been successfully removed by dipping the porous AlN template in hydrofluoric acid (HF) solution prior to the GaN layer deposition. Next, the polycrystalline GaN layer was deposited on both templates by an electron beam (e-beam) evaporator, followed by a thermal annealing treatment to promote better crystalline structure. The polycrystalline GaN layer that was deposited on the 5 min-etched porous AlN template showed a good uniform distribution of grains with lower surface roughness and smaller x-ray diffraction (XRD) full-width half maximum (FWHM) compared to other conditions. In addition, the 5-min-etched porous AlN template also showed better electrical properties than its counterparts, which justifies the use of this process for electronic devices.

Keywords

Porous AlN template UV-assisted electrochemical etching polycrystalline GaN Ga2O3 inclusions and HF dipping 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was supported by Fundamental Research Grant Scheme (FRGS) under Grant Account Number 203/CINOR/6711562, Research University Individual (RUI) under Grant Number 1001/CINOR/8014033 and USM Fellowship Scheme 2018. The authors would like to thank INOR staff for technical support.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Y.S.M. Alvin, N. Zainal, and Z. Hassan, Mater. Res. Innov. 18, S6-375 (2014).CrossRefGoogle Scholar
  2. 2.
    M.E.A. Samsudin, N. Zainal, and Z. Hassan, J. Alloys Compd. 690, 397 (2017).CrossRefGoogle Scholar
  3. 3.
    L.S. Chuah, Z. Hassan, and H. Abu Hassan, Surf. Rev. Lett. 16, 99 (2009).CrossRefGoogle Scholar
  4. 4.
    W.F. Lim, H.J. Quah, Z. Hassan, R. Radzali, N. Zainal, and F.K. Yam, J. Alloys Compd. 649, 337 (2015).CrossRefGoogle Scholar
  5. 5.
    M. Kaneko, H. Ueno, and J. Nemoto, Beilstein J. Nanotechnol. 2, 127 (2011).CrossRefGoogle Scholar
  6. 6.
    R. Radzali, Z. Hassan, N. Zainal, and F.K. Yam, J. Alloys Compd. 622, 565 (2015).CrossRefGoogle Scholar
  7. 7.
    M. Ikram Md Taib, N. Zainal, Z. Hassan, and M. Abu Bakar, ECS J. Solid State Sci. Technol. 5, 584 (2016).CrossRefGoogle Scholar
  8. 8.
    F. Yun, M.A. Reshchikov, L. He, H. Morkoç, C.K. Inoki, and T.S. Kuan, Appl. Phys. Lett. 81, 4142 (2002).CrossRefGoogle Scholar
  9. 9.
    A. Sagar, C.D. Lee, R.M. Feenstra, C.K. Inoki, and T.S. Kuan, J. Vac. Sci. Technol. B 21, 1812 (2003).CrossRefGoogle Scholar
  10. 10.
    N. Chaaben, T. Boufaden, M. Christophersen, and B. El Jani, Microelectron. J. 35, 891 (2004).CrossRefGoogle Scholar
  11. 11.
    B. Kim, K. Lee, S. Jang, J. Jhin, S. Lee, J. Baek, Y. Yu, J. Lee, and D. Byun, Chem. Vapor Depos. 16, 80 (2010).CrossRefGoogle Scholar
  12. 12.
    R.F. Webster, D. Cherns, M. Kuball, Q. Jiang, and D. Allsopp, Semicond. Sci. Technol. 30, 114007 (2015).CrossRefGoogle Scholar
  13. 13.
    M. Liang, G. Wang, H. Li, Z. Li, R. Yao, B. Wang, P. Li, J. Li, X. Yi, J. Wang, and J. Li, J. Semicond. 33, 113002 (2012).CrossRefGoogle Scholar
  14. 14.
    S. Zhou, Z. Lin, H. Wang, T. Qiao, L. Zhong, Y. Lin, W. Wang, W. Yang, and G. Li, J. Alloys Compd. 610, 498–505 (2014).CrossRefGoogle Scholar
  15. 15.
    B. Daudin, F. Widmann, G. Feuillet, C. Adelmann, Y. Samson, M. Arlery, and J.L. Rouvière, Mater. Sci. Eng. B 50, 8 (1997).CrossRefGoogle Scholar
  16. 16.
    C.E.C. Dam, A.P. Grzegorczyk, P.R. Hageman, and P.K. Larsen, J. Cryst. Growth 290, 473 (2006).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Institute of Nano Optoelectronics Research and Technology (INOR)Universiti Sains MalaysiaPenangMalaysia
  2. 2.Department of Physics, Low Dimensional Materials Research Centre (LDMRC)University of MalayaKuala LumpurMalaysia
  3. 3.School of Microelectronic EngineeringUniversiti Malaysia Perlis (UniMAP)KangarMalaysia

Personalised recommendations