Thermoelectric Properties of YBa2Cu3O7−x-Ca3Co4O9 Segmented Oxide Ceramic

  • Pimpilai Wannasut
  • Panupong Jaiban
  • Nittaya Keawprak
  • Anucha WatcharapasornEmail author


YBa2Cu3O7-x-Ca3Co4O9 (YBCO-CCO) segmented ceramic was prepared successfully using a conventional solid state sintering technique. X-ray diffraction patterns and microstructural observation indicated phase purity and a compatibility of YBCO and CCO ceramics. The maximum values of electrical conductivity (σ), Seebeck coefficient (S) and figure of merit (ZT) of YBCO-CCO segmented ceramic were 1.23 × 104 Ω−1 m−1, 179 μV/K and 0.35, respectively. Meanwhile, the thermal conductivity (κ) values of these three compounds were not significantly different and possessed small temperature dependence. The enhancement in the ZT values of YBCO-CCO segmented ceramic at high temperature compared to the conventional CCO ceramic suggested that the former might be used as an alternative p-type material for thermoelectric devices.


Thermoelectric properties p-type material segmented oxide ceramic yttrium barium copper oxide (YBCO) calcium cobalt oxide (CCO) 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was financially supported by the Thailand Research Fund (TRF-RSA5880005) and Thailand Institute of Scientific and Technological Research. Partial funding from the Center of Excellence in Materials Science and Technology, the Department of Physics and Materials Science, the Faculty of Science and Chiang Mai University are also acknowledged. P. Wannasut would also like to thank the financial support from the TRF through the Royal Golden Jubilee Ph. D Program (PhD 0173/2558).


  1. 1.
    K. Kurosaki, H. Muta, M. Uno, and S. Yamanaka, J. Alloy. Compd. 315, 234 (2001).CrossRefGoogle Scholar
  2. 2.
    M. Ito and D. Furumoto, J. Alloy. Compd. 450, 494 (2008).CrossRefGoogle Scholar
  3. 3.
    L. Wang, M. Wang, and D. Zhao, J. Alloy. Compd. 471, 519 (2009).CrossRefGoogle Scholar
  4. 4.
    S. Yoon, J. Young, H. Koon, S.H. Bae, S. Ahn, G.R. Kim, and J.S. Kim, J. Electron. Mater. 43, 414 (2014).CrossRefGoogle Scholar
  5. 5.
    P. Wannasut, P. Prayoonphokkharat, P. Jaiban, N. Keawprak, and A. Watcharapasorn, Mater. Lett. 236, 378 (2019).CrossRefGoogle Scholar
  6. 6.
    W. Liu, J. Hu, S. Zhang, M. Deng, C.G. Han, and Y. Liu, Mater. Today Phys. 1, 50 (2017).CrossRefGoogle Scholar
  7. 7.
    T. Mori, Small 13, 1702013 (2017).CrossRefGoogle Scholar
  8. 8.
    P.H. Ngan, D.V. Christensen, G.J. Snyder, L.T. Hung, S. Linderoth, N.V. Nong, and N. Pryds, Phys. Status Solidi A 211, 9 (2014).CrossRefGoogle Scholar
  9. 9.
    L.T. Hung, N.V. Nong, G.J. Snyder, M.H. Viet, B. Balke, L. Han, E. Stamate, S. Linderoth, and N. Pryds, Energy Convers. Manag. 99, 20 (2015).CrossRefGoogle Scholar
  10. 10.
    J.E. Rodriguez and J. Lopez, Phys. B 387, 143 (2007).CrossRefGoogle Scholar
  11. 11.
    P. Prayoonphokkharat, S. Jiansirisomboon, and A. Watcharapasorn, Electron. Mater. Lett. 9, 413 (2013).CrossRefGoogle Scholar
  12. 12.
    P. Prayoonphokkharat and A. Watcharapasorn, Sci. Adv. Mater. 8, 1 (2016).CrossRefGoogle Scholar
  13. 13.
    C.H. Lim, S.M. Choi, W.S. Seoa, K.H. Kim, J.Y. Kim, and H.H. Park, J. Ceram. Process. Res. 13, 197 (2012).Google Scholar
  14. 14.
    F. Delorme, P. Diaz-Chao, E. Guilmeau, and F. Giovannelli, Ceram. Int. 41, 10038 (2015).CrossRefGoogle Scholar
  15. 15.
    S. Bresch, B. Mieller, C. Selleng, T. Stöcker, R. Moos, and T. Rabe, J. Electroceram. 40, 225 (2018).CrossRefGoogle Scholar
  16. 16.
    T. Yin, D. Liu, Y. Ou, F. Ma, S. Xie, J.F. Li, and J. Li, J. Phys. Chem. C 114, 10061 (2010).CrossRefGoogle Scholar
  17. 17.
    P. Wannasut, P. Eaksuwanchai, and A. Watcharapasorn, JMSAE. 6, 83 (2017).Google Scholar
  18. 18.
    P. Wannasut, N. Keawprak, P. Jaiban, and A. Watcharapasorn, IOP Conf. Ser. Mater. Sci. Eng. 303, 012010 (2018).CrossRefGoogle Scholar
  19. 19.
    T. Radhika, N. Raghu, N. Powrnami, R.J. Ramalingam, and H.A. Al-Lohedan, J. Electron. Mater. 46, 1787 (2017).CrossRefGoogle Scholar
  20. 20.
    A. Safari, R.K. Panda, and V.F. Janas, Ferroelectric Ceramics: Processing, Properties & Applications (Piscataway: Department of Ceramic Science and Engineering, Rutgers University, 2011), p. 8.Google Scholar
  21. 21.
    C. Chen, T. Zhang, R. Donelson, D. Chu, R. Tian, T.T. Tan, and S. Li, Acta Mater. 63, 99 (2014).CrossRefGoogle Scholar
  22. 22.
    Y. Wang, Y. Sui, J. Cheng, X. Wang, and W. Su, J. Alloys Compd. 477, 817 (2009).CrossRefGoogle Scholar
  23. 23.
    Y.H. Lin, J. Lan, Z. Shen, Y. Liu, C.W. Nan, and J.F. Li, Appl. Phys. Lett. 94, 072107 (2009).CrossRefGoogle Scholar
  24. 24.
    K. Koumoto, I. Terasaki, and R. Funahashi, MRS Bull. 31, 206 (2006).CrossRefGoogle Scholar
  25. 25.
    K. Obata, Y. Chonan, T. Komiyama, K. Abe, T. Aoyama, H. Yamaguchi, and S. Sugiyama, J. Electron. Mater. 43, 2425 (2014).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Department of Physics and Materials Science, Faculty of ScienceChiang Mai UniversityChiang MaiThailand
  2. 2.Faculty of Science, Energy and EnvironmentKing Mongkut’s University of Technology North BangkokRayongThailand
  3. 3.Thailand Institute of Scientific and Technological ResearchPathum ThaniThailand
  4. 4.Center of Excellence in Materials Science and Technology, Materials Science Research Center, Faculty of ScienceChiang Mai UniversityChiang MaiThailand

Personalised recommendations