Synthesis and Characterization of Silver Selenide Thin Films by Chemical Bath Deposition and Ionic Exchange

  • E. Fernández-DíazEmail author
  • A. B. Espinoza-Martinez
  • A. Flores-Pacheco
  • R. Ramírez-Bon
  • S. J. Castillo
  • R. Ochoa-Landin


In this work, Ag2Se thin films were synthetized by a two-step technique at standard laboratory conditions. In the first step a silver hydrogen oxide carbonate thin film matrix was obtained by the chemical bath deposition technique. In the second step an ionic exchange between the matrix film and a new selenium ion solution was performed. The presence of silver and selenium atoms was detected by energy dispersive x-ray spectroscopy. From x-ray diffraction characterization, it was concluded there was an orthorhombic and polycrystalline structure for this material, Ag2Se. On the other hand, it was confirmed by transmission electron microscopy. The binding energies of silver and selenium were detected by x-ray photoelectron spectroscopy. From the ultraviolet–visible absorption spectra for the nanostructured Ag2Se thin film it was observed there was a blue shift in its bandgap, being 1.37 eV, meanwhile the reported bulk bandgap value is 0.15 eV.


Thin films chalcogenide synthesis technique silver selenide 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors wish to thank the Physics Postgraduate Program in the Department of Research in Physics in the University of Sonora as well as the CONACYT’s program #297819 that strengthen the scientific and human endeavour of the authors. We gratefully acknowledge the use of TEM facilities at the TEM laboratory of Universidad de Sonora. Also, we thank L.E. Fernandez-King for his valuable contributions in the discussion of the chemical synthesis.


  1. 1.
    L.B. Chandrasekar, R. Vijayalakshmi, B. Rajeswari, R. Chandramohan, G. Arivazhagan, and S.A. Packiaseeli, Brazilian. J. Phys. (2014). Scholar
  2. 2.
    C.N. Zhu, P. Jiang, Z.L. Zhang, D.L. Zhu, Z.Q. Tian, and D.W. Pang, ACS Appl. Mater. Interfaces (2013). Scholar
  3. 3.
    M. Pandiaraman, N. Soundararajan, C. Vijayan, C. Kumar, and R. Ganesan, J. Ovonic Res. 6, 285 (2010).Google Scholar
  4. 4.
    M. Pandiaraman and N. Soundararajan, J. Theor. Appl. Phys. (2012). Scholar
  5. 5.
    B. Pejova, M. Najdoski, I. Grozdanov, and S.K. Dey, Mater. Lett (2000). Scholar
  6. 6.
    M. Kobayashi, Solid State Ionics (1990). Scholar
  7. 7.
    M.S. Khan, A. Talib, S. Pandey, M.L. Bhaisare, G. Gedda, and H.F. Wu, Colloids Surf. B (2017). Scholar
  8. 8.
    H. Cao, Y. Xiao, Y. Lu, J. Yin, B. Li, S. Wu, and X. Wu, Nano Res. (2010). Scholar
  9. 9.
    M. Salavati-Niasari, M. Jafari, and A. Sobhani, Micro Nano Lett. (2013). Scholar
  10. 10.
    H. Liu, B. Zhang, H. Shi, Y. Tang, K. Jiao, and X. Fu, J. Mater. Chem. (2008). Scholar
  11. 11.
    J. Xiao, Y. Xie, R. Tang, and W. Luo, J. Mater. Chem. (2002). Scholar
  12. 12.
    R. Chen, D. Xu, G. Guo, and Y. Tang, J. Mater. Chem. (2002). Scholar
  13. 13.
    R.K. Sharma, A. Wadawale, G. Kedarnath, D. Manna, T.K. Ghanty, B. Vishwanadh, and V.K. Jain, Dalton Trans. (2014). Scholar
  14. 14.
    M.T. Ng, C. Boothroyd, and J.J. Vittal, Chem. Commun (2005). Scholar
  15. 15.
    Q. Yao, I.U. Arachchige, and S.L. Brock, J. Am. Chem. Soc. (2009). Scholar
  16. 16.
    J. Yu and H. Yun, Acta Crystallogr. Sect. E: Struct. Rep. 67, i45 (2011).CrossRefGoogle Scholar
  17. 17.
    S. Graulis, D. Chateigner, R.T. Downs, A.F.T. Yokochi, M. Quirós, L. Lutterotti, E. Manakova, J. Butkus, P. Moeck, and A.L. Bail, J. Appl. Crystallogr. (2009). Scholar
  18. 18.
    M. Kristl, S. Gyergyek, and J. Kristl, Mater. Express (2015). Scholar
  19. 19.
    C.D. Wagner, W.M. Rings, L.E. Davis, J.F. Moulder, W.F. Stickle, P.E. Sobol, and K.D. Bomben, Handbook of x-ray Photoelectron Spectroscopy, 2nd ed. (Edein Prairie: Perkin-Elmer Corporation Physical Electronics Division, 1992), pp. 113–114.Google Scholar
  20. 20.
    A. Naumkin, A. Kraut-Vass, S. Gaarenstroom, and C. Powell, NIST x-ray Photoelectron Spectroscopy Database.(National Institute of Standards and Technology, 2012), Accessed 02 April 2016.
  21. 21.
    C.D. Wagner, W.M. Rings, L.E. Davis, J.F. Moulder, W.F. Stickle, P.E. Sobol, and K.D. Bomben, Handbook of x-ray Photoelectron Spectroscopy, 2nd ed. (Edein Prairie: Perkin-Elmer Corporation Physical Electronics Division, 1992), pp. 92–93.Google Scholar
  22. 22.
    J. Tauc, R. Grigorovici, and A. Vancu, Phys. Status Solidi. (1966). Scholar
  23. 23.
    C.E. Martinez-Nuñez, M. Cortez-Valadez, Y. Delgado-Beleño, R. Britto-Hurtado, R.A.B. Alvarez, O. Rocha-Rocha, H. Arizpe-Chávez, and M. Flores-Acosta, Mater. Lett. (2016). Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Departamento de Investigación en FísicaUniversidad de SonoraHermosilloMexico
  2. 2.Laboratorio de Física del Instituto Tecnológico de HermosilloHermosilloMexico
  3. 3.Centro de Investigación en Química Aplicada. BlvdSaltilloMexico
  4. 4.Posgrado en Nanotecnología, Departamento de FísicaUniversidad de SonoraHermosilloMexico
  5. 5.Departamento de Física, Universidad de SonoraHermosilloMexico
  6. 6.Centro de Investigación y Estudios Avanzados, IPNQuerétaroMexico

Personalised recommendations