Frequency-Dependent Electric Modulus Spectroscopy of (Co3O4)x/(CuTl)-1223 Nanoparticles–Superconductor Composites

  • M. MumtazEmail author
  • M. Imran
  • M. Nasir Khan


The (CuTl)0.5Ba2Ca2Cu3O10−δ {CuTl-1223} superconducting phase was synthesized by a well-established solid-state reaction route and the semiconducting antiferromagnetic cobalt oxide (Co3O4) nanoparticles were prepared by a chemical sol–gel method. The final (Co3O4)x/(CuTl)-1223; (x = 0–2.0 wt.%) nanoparticles–superconductor composites were obtained by adding Co3O4 nanoparticles in CuTl-1223 phase of the CuTl-based superconducting family. A temperature range of 77–298 K was chosen for frequency-dependent electric modulus spectroscopy measurements of (Co3O4)x/(CuTl)-1223 composites to interpret the dynamical aspects of electrical transport phenomena, such as ac-conductivity, carrier hopping rate, etc. The influence of grains as well as the grain boundaries on the ac-conduction properties was witnessed from the complex electric modulus spectra of these composite samples. The grain boundaries showed higher capacitance compared with the grains. This behavior of capacitance was decreased for grain boundaries and increased for grains with higher values of operating temperature in all the superconducting composite samples. The shifting of peaks towards a lower frequency regime in imaginary parts of the electric modulus spectra with increasing Co3O4 nanoparticle contents showed the presence of non-Debye-type relaxation within the material. The effects of these semiconducting antiferromagnetic Co3O4 nanoparticles on the ac-conduction mechanism of the host CuTl-1223 phase were studied, particularly in the perspective of the capacitive resistance contribution via electric modulus spectroscopy measurements.


(Co3O4)x/(CuTl)-1223 composites Co3O4 nanoparticles (CuTl)-1223 superconducting phase grain boundaries electric modulus spectroscopy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



  1. 1.
    L. Zhang, Z. Kangning, X. Wangwang, D. Yifan, X. Rui, L. Fengning, H. Liang, W. Qiulong, Y. Mengyu, and M. Liqiang, Phys. Chem. Chem. Phys. 12, 7619 (2015).CrossRefGoogle Scholar
  2. 2.
    B.J. Chu, X. Zhou, K.L. Ren, B. Neese, M.R. Lin, Q. Wang, F. Bauer, and Q.M. Zhang, Science 5785, 334 (2006).CrossRefGoogle Scholar
  3. 3.
    W. Hao, J. Zhang, Y. Tan, and W. Su, J. Am. Ceram. Soc. 12, 937 (2009).Google Scholar
  4. 4.
    D. Szwagierczak, J. Electroceram. 1, 56 (2009).CrossRefGoogle Scholar
  5. 5.
    L. Singh, U.S. Rai, K.D. Mandal, and N.B. Singh, Prog. Cryst. Growth Charact. Mater. 60, 15 (2014).CrossRefGoogle Scholar
  6. 6.
    M.A. Subramanian, D. Li, N. Duan, B.A. Reisner, and A.W. Sleight, J. Solid State Chem. 151, 323 (2000).CrossRefGoogle Scholar
  7. 7.
    M. Hasan, M.C. Nguyen, H. Kim, S.W. You, Y.S. Jeon, D.T. Tong, D.H. Lee, J.K. Jeong, and R. Choi, Thin Solid Films 589, 90 (2015).CrossRefGoogle Scholar
  8. 8.
    B. Ishai, P.E. Sader, Y. Feldman, I. Felner, and M. Weger, J. Supercond. 18, 455 (2005).CrossRefGoogle Scholar
  9. 9.
    B.B. Mohanty, P.S. Sahoo, M.P.K. Sahoo, and R.N.P. Choudhary, J. Mod. Phys. 3, 357 (2012).CrossRefGoogle Scholar
  10. 10.
    L. Singh, S.S. Yadava, W.S. Woo, U.S. Rai, K.D. Mandal, B.C. Sin, and Y. Lee, Appl. Spectrosc. Rev. 51, 735 (2016).CrossRefGoogle Scholar
  11. 11.
    A.K. Roy, K. Prasad, and A. Prasad, Process. Appl. Ceram. 7, 81 (2013).CrossRefGoogle Scholar
  12. 12.
    A.M. Nawar, H.M.A. Khalek, and M.M. El-Nahass, Org. Opto-Electron. 1, 25 (2015).Google Scholar
  13. 13.
    A. Bagum, M.B. Hossen, and F.U.Z. Chowdhury, Ferroelectrics 494, 19 (2016).Google Scholar
  14. 14.
    K. Kumari, A. Prasad, and K. Prasad, Am. J. Mater. Sci. 6, 1 (2016).Google Scholar
  15. 15.
    S. Thakur, R. Rai, I. Bdikin, and M.A. Valente, J. Mater. Res. 19, 1 (2016).CrossRefGoogle Scholar
  16. 16.
    L. Singh, S.S. Yadava, W.S. Woo, U.S. Rai, K.D. Mandal, B.C. Sin, and Y. Lee, J. Mater. Sci. 28, 763 (2010).Google Scholar
  17. 17.
    M. Imran, M. Mumtaz, M. Naveed, and M.N. Khan, J. Low Temp. Phys. 192, 201 (2018).CrossRefGoogle Scholar
  18. 18.
    M. Mumtaz, M. Naveed, B. Amin, M. Imran, and M.N. Khan, Cer. Inter. 44, 4351 (2018).CrossRefGoogle Scholar
  19. 19.
    J.R. Macdonald and L.D. Potter Jr., Solid State Ionics 1, 61 (1987).CrossRefGoogle Scholar
  20. 20.
    M. Kaiser, Phys. B 407, 606 (2012).CrossRefGoogle Scholar
  21. 21.
    N.G. McCrum, B.E. Read, and G. Williams, Anelastic and Dielectric Effects in Polymeric Solids (New York: Wiley, 1967).Google Scholar
  22. 22.
    C.T. Moynihan, J. Non-Cryst. Solids 172–174, 1395 (1994).CrossRefGoogle Scholar
  23. 23.
    L. Jianjun, C.G. Duan, W.G. Yin, W.N. Mei, R.W. Smith, and J.R. Hardy, Phys. Rev. B 70, 144106 (2004).CrossRefGoogle Scholar
  24. 24.
    M. Naveed, M. Mumtaz, R. Khan, A.A. Khan, and M.N. Khan, J. Alloys Compd. 712, 69 (2017).CrossRefGoogle Scholar
  25. 25.
    M.B. Hossen and A.K.M. Akther Hossain, J. Adv. Ceram. 4, 217 (2015).CrossRefGoogle Scholar
  26. 26.
    M.M. Costa, G.F.M. Pires Jr., A.J. Terezo, M.P.F. Graça, and A.S.B. Sombra, J. Appl. Phys. 110, 034107 (2011).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Materials Research Laboratory, Department of Physics, Faculty of Basic and Applied Sciences (FBAS)International Islamic University (IIU)IslamabadPakistan
  2. 2.Central Diagnostic LaboratoryPhysics Division PINSTECHIslamabadPakistan

Personalised recommendations