Advertisement

Journal of Electronic Materials

, Volume 48, Issue 6, pp 3490–3496 | Cite as

Experimental Study on Flexible Bismuth Telluride Thin Films Deposited by DC Sputtering at Different Powers

  • Supasak Kianwimol
  • Pornsiri Wanarattikan
  • Rachsak Sakdanuphab
  • Prayoonsak Pluengphon
  • Thiti Bovornratanaraks
  • Aparporn SakulkalavekEmail author
Article
  • 36 Downloads

Abstract

Bismuth telluride (Bi2Te3) thin films have been deposited onto polyimide sheet substrates by direct-current (DC) magnetron sputtering at different powers and their microstructure, composition, and electrical and thermoelectrical properties studied. The experimental results indicated that the sputtering power was the key parameter determining their thermoelectric properties. X-ray diffraction analysis confirmed the highly (015) preferred orientation of the films. The Te content and grain size depended on the sputtering power. The power factor of Bi2Te3 deposited by DC sputtering at power of 60 W was comparable to that obtained for highly (00l) Bi2Te3 thin film.

Keywords

Flexible bismuth telluride thermoelectric thin film DC sputtering sputtering power 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This research was financially supported by Thailand Research Fund (TRF) ID Code RSA6180013

References

  1. 1.
    L.M. Goncalves, C. Couto, P. Alpuim, A.G. Rolo, F. Volklein, and J.H. Correia, Thin Solid Films 518, 2816 (2010).CrossRefGoogle Scholar
  2. 2.
    A. Giani, A. Boulouz, F. Pascal-Delannoy, A. Foucaran, E. Charles, and A. Boyer, Mater. Sci. Eng. B 64, 19 (1999).CrossRefGoogle Scholar
  3. 3.
    A. Bailini, F. Dnnati, M. Zamboni, V. Russo, M. Passoni, C.S. Casari, A. Li Bassi, and C.E. Bottani, Appl. Surf. Sci. 254, 1249 (2007).CrossRefGoogle Scholar
  4. 4.
    S.J. Jeon, M. Oh, H. Jeon, S. Hyun, and H.J. Lee, Microelectron. Eng. 88, 541 (2011).CrossRefGoogle Scholar
  5. 5.
    H.J. Lee, H.S. Park, S. Han, and J.Y. Kim, Thermochim. Acta 542, 57 (2012).CrossRefGoogle Scholar
  6. 6.
    K. Agarwal and B.R. Mehta, J. Appl. Phys. 116, 083518 (2014).CrossRefGoogle Scholar
  7. 7.
    M. Takashiri, K. Takano, and J. Hamada, Thin Solid Films 664, 100 (2018).CrossRefGoogle Scholar
  8. 8.
    J.W. Park, S.T. Nguyen, Y. Luan, and J.S. Noh, Mater. Des. 110, 449 (2016).CrossRefGoogle Scholar
  9. 9.
    P. Nuthongkum, R. Sakdanuphab, M. Horprathum, and A. Sakulkalavek, J. Electron. Mater. 46, 6444 (2017).CrossRefGoogle Scholar
  10. 10.
    M. Goto, M. Sasakib, Y. Xu, T. Zhan, Y. Isoda, and Y. Shinohara, Appl. Surf. Sci. 407, 405 (2017).CrossRefGoogle Scholar
  11. 11.
    K. Yamauchi and M. Takashiri, J. Alloys Compd. 698, 977 (2017).CrossRefGoogle Scholar
  12. 12.
    H. Hung, W.L. Luan, and S.T. Tu, Thin Solid Films 517, 3731 (2009).CrossRefGoogle Scholar
  13. 13.
    Z. Zeng, P. Yang, and Z. Hu, Appl. Surf. Sci. 268, 472 (2013).CrossRefGoogle Scholar
  14. 14.
    H. Shang, H. Gu, Y. Zhong, F. Ding, G. Li, F. Qu, H. Zhang, Z. Dong, H. Zhang, and W. Zhou, J. Alloys Compd. 690, 851 (2017).CrossRefGoogle Scholar
  15. 15.
    Z. Yu, C. Yan, T. Huang, W. Huang, Y. Yan, Y. Zhang, L. Liu, Y. Zhang, and Y. Zhao, Appl. Surf. Sci. 258, 5222 (2012).CrossRefGoogle Scholar
  16. 16.
    M.P. Seah, C.A. Clifford, F.M. Green, and I.S. Gilmore, Surf. Interface Anal. 37, 444 (2005).CrossRefGoogle Scholar
  17. 17.
    W.D. Wilson, L.G. Haggmark, and J.P. Biersack, Phys. Rev. B 15, 2458 (1977).CrossRefGoogle Scholar
  18. 18.
    J. Horak, K. Cermák, and L. Koudelka, J. Phys. Chem. Solids 47, 805 (1986).CrossRefGoogle Scholar
  19. 19.
    Z. Stary, J. Horák, M. Stordeur, and M. Stólzer, J. Phys. Chem. Solids 49, 29 (1988).CrossRefGoogle Scholar
  20. 20.
    G.R. Miller and C.Y. Li, J. Phys. Chem. Solids 26, 173 (1965).CrossRefGoogle Scholar
  21. 21.
    B. Fang, Z. Zeng, X. Yan, and Z. Hu, J. Mater. Sci. Mater. Electron. 24, 1105 (2013).CrossRefGoogle Scholar
  22. 22.
    F.H. Hsu, N.F. Wang, Y.Z. Tsai, M.C. Chuang, Y.S. Cheng, and M.P. Houng, Appl. Surf. Sci. 280, 104 (2013).CrossRefGoogle Scholar
  23. 23.
    H. Yue, A. Wu, Y. Feng, X. Zhang, and T. Li, Thin Solid Films 519, 5577 (2011).CrossRefGoogle Scholar
  24. 24.
    V.D. Das and P.G. Ganesan, Mater. Chem. Phys. 57, 57 (1998).CrossRefGoogle Scholar
  25. 25.
    H. Shang, F. Ding, G. Li, L. Wang, F. Qu, H. Zhang, Z. Dong, H. Zhang, Z. Gao, W. Zhou, and H. Gu, J. Alloys Compd. 726, 532 (2017).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Department of Physics, Faculty of ScienceKing Mongkut’s Institute of Technology LadkrabangBangkokThailand
  2. 2.Division of Physical Science, Faculty of Science and TechnologyHuachiew Chalermprakiet UniversitySamutprakarnThailand
  3. 3.College of Advanced Manufacturing InnovationKing Mongkut’s Institute of Technology LadkrabangBangkokThailand
  4. 4.Thailand Center of Excellence in Physics, Commission on Higher EducationBangkokThailand
  5. 5.Extreme Conditions Physics Research Laboratory, Physics of Energy Materials Research Unit, Department of Physics, Faculty of ScienceChulalongkorn UniversityBangkokThailand

Personalised recommendations