The Influence of Various Dopants and Sintering Techniques on the Properties of the Yttria-Ceria-Zirconia System As an Electrolyte for Solid Oxide Fuel Cells

  • Payal Sharma
  • Kanchan L. SinghEmail author
  • Anirudh P. Singh
  • Chetan Sharma
  • Sonia Mago


Zirconia-based ceramic oxides Zr0.90Y0.06Ce0.02X0.02O2−δ (X = Ca, Fe, La, Sr, and Mg) were prepared by conventional and microwave processing. The precursors of Zr0.90Y0.06Ce0.02X0.02O2−δ (X = Ca, Fe, La, Sr, and Mg) were prepared by a mixed oxide method and were calcined at 600°C in an electric furnace. The powders were consolidated in pellet form and sintered in a conventional electric furnace at 1400°C for 6 h and compared using microwave energy at 1400°C for 20 min. The structure and microstructure of sintered products obtained by both methods were studied by x-ray diffraction and scanning electron microscopy. Their density and microhardness were also compared. The electrical conductivities of these samples were studied using alternating current impedance spectroscopy. The analysis of the products obtained by microwave aand conventional methods shows that the microwave sintered samples have uniform grain growth, higher density, higher microhardness and higher electrical conductivity than the corresponding conventionally sintered products. The microwave sintered sample of composition Zr0.90Y0.06Ce0.02Ca0.02O2−δ was found to have the highest density and microhardness, as well as the highest electrical conductivity among all of the microwave and conventionally sintered products.


Microwave processing grain size microhardness fuel cells 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



  1. 1.
    A. Choudhury, H. Chandra, and A. Arora, Renew. Sustain. Energy Rev. 20, 430 (2013).CrossRefGoogle Scholar
  2. 2.
    E.S.M. Seo, W.K. Yoshito, V. Ussui, D.R.R. Lazar, S.R.H.D.M. Castanho, and J.O.A. Paschoal, Mater. Res. 7, 215 (2004).CrossRefGoogle Scholar
  3. 3.
    S.C. Singhal, Solid State Ion. 135, 305 (2000).CrossRefGoogle Scholar
  4. 4.
    G. Xu, Y.W. Zhang, C.S. Liao, and C.H. Yan, Solid State Ion. 166, 391 (2004).CrossRefGoogle Scholar
  5. 5.
    S. Ramesh, C.K. Ng, C.Y. Tan, W.H. Wong, C.Y. Ching, A. Muchtar, and P. Devaraj, Ceram. Int. 42, 14469 (2016).CrossRefGoogle Scholar
  6. 6.
    A. Ghazanfari, W. Li, M.C. Leu, J.L. Watts, and G.E. Hilmas, Ceram. Int. 43, 6082 (2017).CrossRefGoogle Scholar
  7. 7.
    J.R. Kelly and I. Denry, Dent. Mater. 24, 289 (2008).CrossRefGoogle Scholar
  8. 8.
    Z.G. Lv, P. Yao, R.S. Guo, and F.Y. Dai, Mater. Sci. Eng. A 458, 355 (2007).CrossRefGoogle Scholar
  9. 9.
    M.D. Ridder, R.G. Welzenis, H.H. Brongersma, and U. Kreissig, Solid State Ion. 158, 67 (2003).CrossRefGoogle Scholar
  10. 10.
    M. Biswas and K.C. Sadanala, J. Powder Metall. Min. 2, 4 (2013).Google Scholar
  11. 11.
    H.P. Dasari, J.S. Ahn, K. Ahn, S.Y. Park, J. Hong, H. Kim, K.J. Yoon, J.W. Son, H.W. Lee, and J.H. Lee, Solid State Ion. 263, 103 (2014).CrossRefGoogle Scholar
  12. 12.
    O. Yamamoto, Electrochem. Acta 45, 2423 (2000).CrossRefGoogle Scholar
  13. 13.
    S. Hong, J. Bae, B. Koo, and Y.B. Kim, Electrochem. Commun. 47, 1 (2014).CrossRefGoogle Scholar
  14. 14.
    Z. Jiang, L. Zhang, L. Cai, and C. Xia, Electrochem. Acta 54, 3059 (2009).CrossRefGoogle Scholar
  15. 15.
    P.C. Su, C.C. Chao, J.H. Shim, R. Fasching, and F.B. Prinz, Nano Lett. 8, 2289 (2008).CrossRefGoogle Scholar
  16. 16.
    J.H. Shim, C.C. Chao, H. Huang, and F.B. Prinz, Chem. Mater. 19, 3850 (2007).CrossRefGoogle Scholar
  17. 17.
    H. Huang, M. Nakamura, P. Su, R. Fasching, Y. Saito, and F.B. Prinz, Electrochem. Soc. 154, B20 (2007).CrossRefGoogle Scholar
  18. 18.
    T.I. Politova and J.T.S. Irvine, Solid State Ion. 168, 153 (2004).CrossRefGoogle Scholar
  19. 19.
    G.K. Meenashisundaram, T.H.D. Ong, G. Parande, V. Manakari, X. Shulin, and M. Gupta, J. Rare Earth 35, 723 (2017).CrossRefGoogle Scholar
  20. 20.
    D.J. Kim, J. Am. Ceram. Soc. 72, 1415 (1989).CrossRefGoogle Scholar
  21. 21.
    R. Gerhardt, A.S. Nowick, M.E. Mochel, and I. Dumler, J. Am. Soc. 69, 647–651 (1986).Google Scholar
  22. 22.
    K. Tanwar, N. Jaiswal, D. Kumar, and O. Parkash, J. Alloys Compd. 684, 683 (2016).CrossRefGoogle Scholar
  23. 23.
    T.S. Zhang, J. Ma, Y.J. Leng, S.H. Chan, P. Hing, and J.A. Kilner, Solid State Ion. 168, 187 (2004).CrossRefGoogle Scholar
  24. 24.
    H. Yamamura, E. Katoh, M. Ichikawa, K. Kakinuma, T. Mori, and H. Haneda, Electrochem. 68, 455 (2000).Google Scholar
  25. 25.
    M.T. Vinas, F. Zhang, J. Vleugels, and M. Anglada, J. Eur. Ceram. Soc. 38, 2621 (2018).CrossRefGoogle Scholar
  26. 26.
    D.E. Clark and W.H. Sutton, Annu. Rev. Mater. Sci. 26, 299 (1996).CrossRefGoogle Scholar
  27. 27.
    R.R. Mishra and A.K. Sharma, Compos. Part A Appl. Sci. Manuf. 81, 78 (2016).CrossRefGoogle Scholar
  28. 28.
    A. Goldstein, N. Travitzky, A. Singurindy, and M. Kravchik, J. Eur. Ceram. Soc. 19, 2067 (1999).CrossRefGoogle Scholar
  29. 29.
    S. Bodhak, S. Bose, and A. Bandyopadhyay, J. Am. Ceram. Soc. 94, 32 (2011).CrossRefGoogle Scholar
  30. 30.
    G. Sethi, A. Upadhyaya, and D. Agrawal, Sci. Sinter. 35, 49 (2003).CrossRefGoogle Scholar
  31. 31.
    K.L. Singh, A. Kumar, A.P. Singh, and S.S. Sekhon, Bull. Mater. Sci. 31, 655 (2008).CrossRefGoogle Scholar
  32. 32.
    A.P. Singh, N. Kaur, K.L. Singh, and A. Kumar, J. Am. Ceram. Soc. 90, 789 (2007).CrossRefGoogle Scholar
  33. 33.
    P. Sharma, C. Sharma, K.L. Singh, and A.P. Singh, JOM 70, 1398 (2018).CrossRefGoogle Scholar
  34. 34.
    K.L. Singh, A. Kumar, A.P. Singh, and S.S. Sekhon, in American Ceramic Society Conference Proceedings, Florida, USA (2008).Google Scholar
  35. 35.
    K.L. Singh, P. Sharma, A.P. Singh, A. Kumar, and S.S. Sekhon, JOM 69, 2448 (2017).CrossRefGoogle Scholar
  36. 36.
    H.S. Thamyscira, P.F.G. João, J.A. Francisco, D.P.F. Loureiroc, F.C. Fonsecad, and D.A. Macedoa, Ceram. Int. 44, 2745 (2018).CrossRefGoogle Scholar
  37. 37.
    J. Yang, B. Ji, J. Si, Q. Zhang, Q. Yin, J. Xie, and C. Tian, Int. J. Hydrog. Energy 41, 15979 (2016).CrossRefGoogle Scholar
  38. 38.
    B.D. Cullity, Elements of X-Ray Diffraction, 2nd ed. (Reading: Addison-Wesley, 1978).Google Scholar
  39. 39.
    A.A. Jais, S.M. Ali, M. Anwar, M.R. Somalu, A. Muchtar, W.N. Isahak, and N.P. Brandon, Ceram. Int. 43, 8119 (2017).CrossRefGoogle Scholar
  40. 40.
    R.V. Manglaraja, S. Ananthakumar, A. Scachtsiek, M.L. Carlos, P. Camurri, and R.E. Alvia, Mater. Sci. Eng. A 527, 3645 (2010).CrossRefGoogle Scholar
  41. 41.
    T. Kumatso, T. Noguchi, and Y. Benino, J. Non-Cryst. Solids 222, 206 (1997).CrossRefGoogle Scholar
  42. 42.
    S. Khan and K. Singh, Ceram. Int. 45, 695 (2019).CrossRefGoogle Scholar
  43. 43.
    A. Zevalkink, A. Hunter, M. Swanson, C. Johnson, J. Kapat, N. Orlovskaya, and M.R.S. Symp, Proc. Ser. 972, 163 (2007).Google Scholar
  44. 44.
    R. Grosso and E. Muccillo, J. Power Sources 233, 6 (2013).CrossRefGoogle Scholar
  45. 45.
    S. Yarmolenko, J. Sankar, N. Bernier, M. Klimov, J. Kapat, and N. Orlovskaya, J. Fuel Cell Sci. Technol. 6, 021007 (2009).CrossRefGoogle Scholar
  46. 46.
    J.T. Irvine and P. Connor, Solid Oxide Fuels Cells: Facts and Figures (London: Springer, 2013).CrossRefGoogle Scholar
  47. 47.
    H. Bouhamed, Mater. Sci. Eng. B 225, 182 (2017).CrossRefGoogle Scholar
  48. 48.
    E.C. Subbarao, Zirconia—an overview.Advances in Ceramics, Science and Technology of Zirconia, Vol. 3, ed. A.H. Heuer and L.W. Hobbs (Amsterdam: Elsevier, 1981), pp. 1–24.Google Scholar
  49. 49.
    R.H.J. Hannink, P.M. Kelly, and B.C. Muddle, J. Am. Ceram. Soc. 83, 461 (2000).CrossRefGoogle Scholar
  50. 50.
    Y. Kan, S. Li, P. Wang, G.J. Zhang, O.V.D. Biest, and J. Vleugels, Solid State Ion. 179, 1531 (2008).CrossRefGoogle Scholar
  51. 51.
    O. Bohnke, V. Gunes, K.V. Kravchyk, A.G. Belous, O.Z. Yanchevskii, and O.I. V’Yunov, Solid State Ion. 262, 517 (2014).CrossRefGoogle Scholar
  52. 52.
    M.N. Rahman, J.R. Gross, and R.E. Dutton, Acta Mater. 54, 1615 (2006).CrossRefGoogle Scholar
  53. 53.
    A.R. Denton and N.W. Ashcroft, Phys. Rev. A 43, 3161 (1991).CrossRefGoogle Scholar
  54. 54.
    A.J. Flegler, T.E. Burye, Q. Yang, and J.D. Nicholas, Ceram. Int. 40, 16323 (2014).CrossRefGoogle Scholar
  55. 55.
    H. Inaba, T. Nakajima, and H. Tagawal, Solid State Ion. 106, 263 (1998).CrossRefGoogle Scholar
  56. 56.
    N. Orlovskaya, S. Lukich, G. Subhash, T. Graule, and J. Kuebler, J. Power Sources 195, 2774 (2010).CrossRefGoogle Scholar
  57. 57.
    S.L. Hwang, I.W. Chen, and J. Am, Ceram. Soc. 73, 3269 (1990).CrossRefGoogle Scholar
  58. 58.
    J.A. Allemann, B. Michel, H.-B. Märkia, L.J. Gaucklera, and E.M. Moserb, J. Eur. Ceram. Soc. 15, 951 (1995).CrossRefGoogle Scholar
  59. 59.
    S.C. Sharma, N.M. Gokhale, R. Dayal, and R. Lal, Bull. Mater. Sci. 25, 15 (2002).CrossRefGoogle Scholar
  60. 60.
    S.I. Ahmad, P.K. Rao, and I.A. Syed, J. Taibah Univ. Sci. 10, 381 (2016).CrossRefGoogle Scholar
  61. 61.
    X. Miao, D. Sun, P.W. Hoo, J. Liu, Y. Hu, and Y. Chen, Ceram. Int. 30, 1041 (2004).CrossRefGoogle Scholar
  62. 62.
    H. Zhou, J. Li, D. Yi, and L. Xiao, Phys. Procedia 22, 14 (2011).CrossRefGoogle Scholar
  63. 63.
    T. Hiratoko, A. Yoneda, and M. Osako, Ceram. Int. 40, 12471 (2014).CrossRefGoogle Scholar
  64. 64.
    F. Yuan, J. Wang, H. Miao, C. Goo, and W.G. Wang, J. Alloys Compd. 549, 200 (2013).CrossRefGoogle Scholar
  65. 65.
    S.P. Miller, B.I. Dunlap, and A.S. Fleisher, Solid State Ion. 253, 130 (2013).CrossRefGoogle Scholar
  66. 66.
    R.H.L. Garcia, V. Ussui, N.B. de Lima, E.N.S. Muccillo, and D.R.R. Lazar, J. Alloys Compd. 486, 747 (2009).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Payal Sharma
    • 1
    • 2
  • Kanchan L. Singh
    • 1
    Email author
  • Anirudh P. Singh
    • 2
  • Chetan Sharma
    • 2
  • Sonia Mago
    • 2
  1. 1.Department of Applied SciencesD.A.V Institute of Engineering and TechnologyJalandharIndia
  2. 2.IKG Punjab Technical UniversityKapurthalaIndia

Personalised recommendations