Advertisement

Journal of Electronic Materials

, Volume 48, Issue 5, pp 3285–3296 | Cite as

Fe3O4@SiO2@AgO Nanocomposite: Synthesis, Characterization, and Investigation of its Photocatalytic Application

  • Parisa RezaiEmail author
  • Sahar Baniyaghoob
  • Moayad Hossaini Sadr
Article
  • 7 Downloads

Abstract

Magnetic oxide nanocomposite (Fe3O4@SiO2@AgO), as the photocatalytic agent, was successfully synthesized through the simple chemical method. Besides, waste rice husk was used as the green source for silicon dioxide nanoparticles. The effect of AgO on the photocatalytic performance, degradation of phenol red under visible light, of Fe3O4@SiO2 nanocomposite was examined through the absorption spectroscopy technique. The maximum degradation by Fe3O4@SiO2 nanocomposite was 55% under visible light. On other hand, after combining Fe3O4@SiO2 nanocomposite with AgO, degradation percentage was increased to 89% thanks to the effect of AgO on the charge recombination process which leads to enhancement of the electron–hole separation. In order to test the catalytic application of Fe3O4@SiO2 nanocomposite, the impact of various parameters such as contact time, SiO2 concentration, and absorbent concentration on the desulfurization process of model oil was investigated. The efficiencies of removing dibenzothiophene from the fuel by Fe3O4 nanoparticles, SiO2 nanoparticles, and Fe3O4-SiO2 nanocomposite were 34.9%, 65.6%, and 78.2%, respectively, under optimum conditions.

Keywords

Fe3O4@SiO2@AgO triplet nanocomposite photocatalysis VSM rice husk 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

The authors acknowledge the kind financial supports of Olom Tahghighat Tehran Azad University, Iran.

References

  1. 1.
    H. Zeynali, S.B. Mousavi, and S.M. Hosseinpour-Mashkani, Mater. Lett. 144, 65 (2015).CrossRefGoogle Scholar
  2. 2.
    A. Sobhani-Nasab, Z. Zahraei, M. Akbari, M. Maddahfar, and S.M. Hosseinpour-Mashkani, J. Mol. Struct. 1139, 430 (2017).CrossRefGoogle Scholar
  3. 3.
    M. Maddahfar, M. Ramezani, and S.M. Hosseinpour-Mashkani, Appl. Phys. A 122, 752 (2016).CrossRefGoogle Scholar
  4. 4.
    S.M. Hosseinpour-Mashkani, M. Maddahfar, and A. Sobhani-Nasab, J. Mater. Sci. Mater. Electron. 27, 474 (2016).CrossRefGoogle Scholar
  5. 5.
    M. Ramezani and S.M. Hosseinpour-Mashkani, J. Electron. Mater. 46, 1371 (2017).CrossRefGoogle Scholar
  6. 6.
    S.M. Hosseinpour-Mashkani, M. Maddahfar, and A. Sobhani-Nasab, J. Electron. Mater. 45, 3612 (2016).CrossRefGoogle Scholar
  7. 7.
    S.M. Hosseinpour-mashkani, A. Sobhani-Nasab, and M. Mehrzad, J. Mater. Sci. Mater. Electron. 27, 5758 (2016).CrossRefGoogle Scholar
  8. 8.
    S.M. Hosseinpour-mashkani and A. Sobhani-Nasab, J. Mater. Sci. Mater. Electron. 27, 3240 (2016).CrossRefGoogle Scholar
  9. 9.
    C. Song, Catal. Today 86, 211 (2003).CrossRefGoogle Scholar
  10. 10.
    M. Houalla, D.H. Broderick, A.V. Sapre, N.K. Nag, V.H.J. Beer, B.C. Gates, and H. Kwart, J. Catal. 61, 523 (1980).CrossRefGoogle Scholar
  11. 11.
    H. Farag, K. Sakanishi, I. Mochida, and D.D. Whitehurst, Energy Fuels 13, 449 (1998).CrossRefGoogle Scholar
  12. 12.
    S. Kumagai, H. Ishizawa, and Y. Toida, Fuel 89, 365 (2010).CrossRefGoogle Scholar
  13. 13.
    I. Mochida, K. Sakanishi, X. Ma, S. Nagao, and T. Isoda, Catal. Today 29, 185 (1996).CrossRefGoogle Scholar
  14. 14.
    F. van Looij, P. van der Laan, W.H.J. Stork, D.J. DiCamillo, and J. Swain, Appl. Catal. A 170, 1 (1998).CrossRefGoogle Scholar
  15. 15.
    Y. Yoshimura, M. Toba, H. Farag, and K. Sakanishi, Catal. Surv. Asia 8, 47 (2004).CrossRefGoogle Scholar
  16. 16.
    L. Zhang, G. Zhang, S. Wang, J. Peng, and W. Cui, Environ. Prog. Sustain. Energy 35, 1070 (2016).CrossRefGoogle Scholar
  17. 17.
    S. Rovani, J.J. Santos, P. Corio, and D.A. Fungaro, ACS Omega 3, 2618 (2018).CrossRefGoogle Scholar
  18. 18.
    S. Kachbouri, N. Mnasri, E. Elalouia, and Y. Moussaoui, J. Saudi Chem. Soc. 22, 405 (2018).CrossRefGoogle Scholar
  19. 19.
    C.O. Metin, J.R. Baran Jr., and Q.P. Nguyen, J. Nanopart. Res. 14, 1246 (2012).CrossRefGoogle Scholar
  20. 20.
    C. Lu, H. Bai, F. Su, W. Chen, J.F. Hwang, and H.H. Lee, J. Air Waste Manag. Assoc. 60, 489 (2010).CrossRefGoogle Scholar
  21. 21.
    A. Javidan, M. Ramezani, A. Sobhani-Nasab, and S.M. Hosseinpour-Mashkani, J. Mater. Sci. Mater. Electron. 26, 3813 (2015).CrossRefGoogle Scholar
  22. 22.
    S. Supriya, S. Kumar, and M. Kar, J. Electron. Mater. 46, 6884 (2017).CrossRefGoogle Scholar
  23. 23.
    K. Wu, G. Hu, Y. Cao, Z. Peng, and K. Du, Mater. Lett. 161, 178 (2015).CrossRefGoogle Scholar
  24. 24.
    Y. Lin, J. Zhang, M. Li, L. Wang, and H. Yang, J. Alloys Compd. 726, 154 (2017).CrossRefGoogle Scholar
  25. 25.
    Z. Nemati, R. Das, J. Alonso, E. Clements, M.H. Phan, and H. Srikanth, J. Electron. Mater. 46, 3764 (2016).CrossRefGoogle Scholar
  26. 26.
    T.P. Nguyen, U.T.P. Le, K.T. Ngo, K.D. Pham, and L.X. Dinh, J. Electron. Mater. 45, 3801 (2016).CrossRefGoogle Scholar
  27. 27.
    A. Ahmadi, S. Heidarzadeh, A.R. Mokhtari, E. Darezereshki, and H.A. Harouni, J. Geochem. Explor. 147, 151 (2014).CrossRefGoogle Scholar
  28. 28.
    E. Darezereshki, F. Tavakoli, F. Bakhtiari, A.B. Vakylabad, and M. Ranjbar, Mater. Sci. Semicond. Process. 27, 56 (2014).CrossRefGoogle Scholar
  29. 29.
    A. Sobhani-Nasab, M. Maddahfar, and S.M. Hosseinpour-Mashkani, J. Mol. Liq. 216, 1 (2016).CrossRefGoogle Scholar
  30. 30.
    S. Sadeghi, H. Azhdari, H. Arabi, and A.Z. Moghaddam, J. Hazard. Mater. 215, 208 (2012).CrossRefGoogle Scholar
  31. 31.
    G.H. Du, Z.L. Liu, X. Xia, Q. Ch, and S.M. Zhang, J. Sol–Gel Sci. Technol. 39, 285 (2006).CrossRefGoogle Scholar
  32. 32.
    S.M. Hosseinpour-Mashkani and M. Ramezani, Mater. Lett. 130, 259 (2014).CrossRefGoogle Scholar
  33. 33.
    M. Salavati-Niasari, S.M. Hosseinpour-Mashkani, and F. Mohandes, J. Mater. Sci. Mater. Electron. 26, 7936 (2015).CrossRefGoogle Scholar
  34. 34.
    M. Zahedifar, Z. Chamanzadeh, and S.M. Hosseinpoor-Mashkani, J. Lumin. 135, 66 (2013).CrossRefGoogle Scholar
  35. 35.
    S.M. Hosseinpour-Mashkani, M. Ramezani, and M. Vatanparast, Mater. Sci. Semicond. Process. 26, 112 (2014).CrossRefGoogle Scholar
  36. 36.
    M. Amiri, M. Salavati-Niasari, A. Akbari, and T. Gholami, Int. J. Hydrog. Energy 42, 24846 (2017).CrossRefGoogle Scholar
  37. 37.
    D.K. Kim, Y. Zhang, W. Voit, K.V. Rao, and M. Muhammed, J. Magn. Magn. Mater. 225, 30 (2001).CrossRefGoogle Scholar
  38. 38.
    Y. Fu, P. Xiong, H. Chen, X. Sun, and X. Wang, Am. Chem. Soc. 51, 725731 (2012).Google Scholar
  39. 39.
    H.Y. Zhu, R. Jiang, S.H. Huang, J. Yao, F.Q. Fu, and J.B. Li, Ceram. Int. 41, 11625 (2015).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Parisa Rezai
    • 1
    Email author
  • Sahar Baniyaghoob
    • 1
  • Moayad Hossaini Sadr
    • 1
  1. 1.Department of Chemistry, Science and Research BranchIslamic Azad UniversityTehranIran

Personalised recommendations