Advertisement

Journal of Electronic Materials

, Volume 48, Issue 5, pp 3304–3310 | Cite as

Extremely Low-Loss Broadband Thermal Infrared Absorber Based on Tungsten Metamaterial

  • Fathi Bendelala
  • Ali CheknaneEmail author
  • Hikmat S. Hilal
  • Souraya Goumri-Said
Article
  • 45 Downloads

Abstract

An extremely low-loss polarization-insensitive broadband absorber in the thermal infrared region, based on tungsten metamaterial, is proposed. The absorber exhibits almost perfect absorption of 99%, with a broad absorption bandwidth ranging from 56 THz to 117 THz. The broad absorption is attributed to the large effective impedance adaptation of the tungsten metamaterial over a wide angle range in both the transverse electrical (0° to 75°) and transverse magnetic (0° to 80°) field polarizations. Based on these extraordinary electromagnetic properties, the proposed system can achieve excellent performance, with a figure of merit of 2.15 × 106, higher than previously reported values for similar metamaterial absorbers.

Keywords

Broadband absorption polarization insensitive tungsten metamaterial low loss 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

References

  1. 1.
    W. Cai and V. Shalaev, Optical Metamaterials: Fundamentals and Applications (Springer: New York, 2010).CrossRefGoogle Scholar
  2. 2.
    H. Zhang, X.-Y. Cao, J. Gao, H.-H. Yang, and Q. Yang, Progr. Electromag. Res. Lett. 44, 35 (2014).CrossRefGoogle Scholar
  3. 3.
    H. Wang, P.V. Sivan, A. Mitchell, G. Rosengarten, P. Phelan, and L. Wang, Sol. Energy Mater. Sol. Cells 137, 235 (2015).CrossRefGoogle Scholar
  4. 4.
    K. Iwaszczuk, A.C. Strikwerda, K. Fan, X. Zhang, R.D. Averitt, and P.U. Jepsen, Opt. Express 20, 155520 (2012).Google Scholar
  5. 5.
    F.Y. Meng, Q. Wu, D. Erni, K. Wu, and J.C. Lee, IEEE. Trans. Microw. Theory Tech. 60, 3013 (2012).CrossRefGoogle Scholar
  6. 6.
    Y. Cheng, X.S. Mao, C. Wu, L. Wu, and R.Z. Gong, Opt. Mater. 53, 195 (2016).CrossRefGoogle Scholar
  7. 7.
    S.H. Han and B.J. Lee, Opt. Express 24, 250239 (2016).Google Scholar
  8. 8.
    Q. Du, Z. Zeng, D. Xiang, T. Lv, G. Zhang, and H. Yang, J. Mod. Opt. 61, 621 (2014).CrossRefGoogle Scholar
  9. 9.
    S. Bhattacharyya, S. Ghosh, D. Chaurasiya, and K.V. Srivastava, Appl. Phys. A 118, 207 (2015).CrossRefGoogle Scholar
  10. 10.
    R. Feng, J. Qiu, Y. Cao, L. Liu, W. Ding, and L. Chen, Appl. Phys. Lett. 105, 181102 (2014).CrossRefGoogle Scholar
  11. 11.
    F. Bendelala, A. Cheknane, and H.S. Hilal, Opt. Quant. Electron. 50, 10 (2018).CrossRefGoogle Scholar
  12. 12.
    Y. Peng, X.F. Zang, Y.M. Zhu, C. Shi, L. Chen, B. Cai, and S.L. Zhuang, Opt. Express 23, 226580 (2015).Google Scholar
  13. 13.
    R. Gao, X. Zongcheng, C. Ding, W. Liang, and J. Yao, Opt. Commun. 356, 400 (2015).CrossRefGoogle Scholar
  14. 14.
    K. Inki, S. Sunae, S.R. Ahsan, Q.M. Muhammad, and R. Junsuk, Nanophotonics 7, 11 (2018).Google Scholar
  15. 15.
    J. Wu, C. Zhou, J. Yu, H. Cao, S. Li, and W. Jia, IEEE Photon. Technol. Lett. 26, 949 (2014).CrossRefGoogle Scholar
  16. 16.
    Q. Feng, M. Pu, C. Hu, and X. Luo, Opt. Lett. 37, 2122 (2012).Google Scholar
  17. 17.
    J.F. Chen, Z. Hu, G. Wang, X. Huang, S. Wang, X. Hu, and M. Liu, IEEE Trans. Anten. Propag 63, 4367 (2015).CrossRefGoogle Scholar
  18. 18.
    J. Chen, X. Huang, G. Zerihun, Z. Hu, S. Wang, G. Wang, X. Hu, and M. Liu, J. Electron. Mater. 44, 4269 (2015).CrossRefGoogle Scholar
  19. 19.
    Y. She, Y. Pang, J. Wang, H. Ma, Z. Pei, and Q. Shaobo, Appl. Phys. 48, 445008 (2015).Google Scholar
  20. 20.
    S. Tan, F. Yan, L. Singh, W. Cao, N. Xu, X. Hu, R. Singh, M. Wang, and W. Zhang, Opt. Express 23, 29222 (2015).CrossRefGoogle Scholar
  21. 21.
    T. Sato, and T. Suzuki. 41st International Conference on Infrared, Millimeter, and Terahertz Waves, W4D.1. Copenhagen, Denmark, Sept. 25–30 (2016). IEEE Explore, 01 December (2016), INSPEC Accession Number: 16502870.  https://doi.org/10.1109/irmmw-thz.2016.7758919.
  22. 22.
    Y. Takebayashi, T. Togashi, and T. Suzuki, IEEJ Trans. Sens. Micromach. 135, 476 (2015).  https://doi.org/10.1541/ieejsmas.135.476.CrossRefGoogle Scholar
  23. 23.
    T. Dragan, O. Marko, J. Olga, and J. Zoran, Phys. Scr. T162, 014048 (2015).Google Scholar
  24. 24.
    I. Koki and S. Takehito, J. Infrared Millim. Terahz. Waves. 38, 1130 (2017).CrossRefGoogle Scholar
  25. 25.
    E. Episkopou, S. Papantonis, W.J. Otter, and S. Lucyszyn, IEEE Trans. Terahertz Sci. Technol. 2, 513 (2012).CrossRefGoogle Scholar
  26. 26.
    KhQ Le, J. Bai, Q.M. Ngo, and P.-Y. Chen, J. Electron. Mater. 46, 668 (2016).CrossRefGoogle Scholar
  27. 27.
    M.A. Ordal, L.L. Long, R.J. Bell, S.E. Bell, R.R. Bell, R.W. Alexander Jr, and C.A. Ward, Appl. Opt. 22, 1099 (1983).CrossRefGoogle Scholar
  28. 28.
    S.R. Ahsan, Q.M. Muhammad, J. Heongyeong, K. Inki, and R. Junsuk, Sci. Rep. 8, 2443 (2018).CrossRefGoogle Scholar
  29. 29.
    Y.P. Lee, J.Y. Rhee, Y.J. Yoo, and K.W. Kim, Metamaterials for Perfect Absorption (New York: Springer, 2016).CrossRefGoogle Scholar
  30. 30.
    K. Diest, Numerical Methods for Metamaterial Design (New York: Springer, 2013).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Fathi Bendelala
    • 1
  • Ali Cheknane
    • 1
    Email author
  • Hikmat S. Hilal
    • 2
  • Souraya Goumri-Said
    • 3
  1. 1.Laboratoire des semiconducteurs et matériaux fonctionnelsUniversité Amar Telidji de LaghouatLaghouatAlgeria
  2. 2.SSERL, Department of ChemistryAn-Najah National UniversityNablusPalestine
  3. 3.Physics Department, College of ScienceAlfaisal UniversityRiyadhSaudi Arabia

Personalised recommendations