Journal of Electronic Materials

, Volume 48, Issue 5, pp 3276–3284 | Cite as

First-Principle Predictions of Electronic Properties and Half-Metallic Ferromagnetism in Vanadium-Doped Rock-Salt CaS

  • Ouafa HamidaneEmail author
  • Athmane Meddour
  • Chahrazed Bourouis


The objective of this study is to theoretically investigate the electronic, structural and magnetic properties of calcium sulfide (CaS) doped with transition metal vanadium (V) at various concentrations of this element in the rock-salt phase. All properties of Ca1−xVxS compounds are achieved using the full potential linearized augmented plane wave (FP-LAPW) method with a density functional theory (DFT) implemented in WIEN2 K code. The results obtained show that the Ca0.75V0.25S and the Ca0.50V0.50S compounds are of half-metallic ferromagnetic (HMF) character at a 100% spin polarization, which makes them potential candidates for spin injection applications in spintronic devices, while the Ca0.25V0.75S compound depicted a nearly half-metallic character. In all compounds, the data of the magnetic moment demonstrated that the vanadium impurity atom (3 μB) is the most important source by comparison with the Ca and S, which have minor contributions. In addition, the half-metallic gap (GHM) is an important parameter to consider for potential applications in spintronic devices, which are 0.916 eV and 0.315 eV, respectively, for Ca0.75V0.25S and Ca0.50V0.50S compounds, while for x = 0.75, it is destroyed due to the broadening of 3d states of vanadium impurity in the gap. However, an experimental confirmation is needed to confirm our predictions.


Diluted Magnetic Semiconductor (DMS) half-metallic gap electronic structures magnetic properties V-doped calcium sulfide (CaS) 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



  1. 1.
    M. Yogeswari and G. Kalapana, Mod. Phys. Lett. B 25, 1537 (2011).CrossRefGoogle Scholar
  2. 2.
    V.K. Sharma, R. Xalxo, and G.D. Varma, Cryst. Res. Technol. 42, 34 (2007).CrossRefGoogle Scholar
  3. 3.
    J. Kossut and W. Dobrowolski, Diluted magnetic semiconductors. Handbook of Magnetic Materials, Vol. 7, ed. K.H.J. Buschow (Amsterdam: North-Holland, 1993), p. 231.Google Scholar
  4. 4.
    Q. Li, X. Gong, C. Wang, J. Wang, K. Ip, and S. Hark, Adv. Mater. 16, 1436 (2004).CrossRefGoogle Scholar
  5. 5.
    Q. Mahmood, S.M. Alay-e-Abbas, M. Hassan, and N.A. Noor, J. Alloys Compd. 688, 899 (2016).CrossRefGoogle Scholar
  6. 6.
    R.P. Rao, J. Mater. Sci. 5, 3357 (1986).CrossRefGoogle Scholar
  7. 7.
    J. Versluys, D. Poelman, D. Wanters, and R.L.V. Meirhaeghe, J. Phys. Condens. Matter 13, 5709 (2001).CrossRefGoogle Scholar
  8. 8.
    A.N. Kravtsova, I.E. Stekhin, and A.V. Soldatov, Phys. Rev. B 69, 134109 (2004).CrossRefGoogle Scholar
  9. 9.
    S. Hakamata, M. Ehara, H. Kominami, Y. Nakanishi, and Y. Hatanaka, Appl. Surf. Sci. 244, 469 (2005).CrossRefGoogle Scholar
  10. 10.
    H. Choutri, M.A. Ghebouli, B. Ghebouli, N. Bouarissa, E. Uçgun, and H.Y. Ocak, Mater. Chem. Phys. 148, 1000 (2014).CrossRefGoogle Scholar
  11. 11.
    G.A. Saum and E.B. Hensley, Phys. Rev. B 113, 1019 (1959).CrossRefGoogle Scholar
  12. 12.
    Y. Kaneko and T. Koda, J. Cryst. Growth 86, 72 (1988).CrossRefGoogle Scholar
  13. 13.
    Y. Kaneko, K. Morimoto, and T. Koda, J. Soc. Jpn. 52, 4385 (1985).CrossRefGoogle Scholar
  14. 14.
    M.-S. Jin, N.-O. Kim, H.-G. Kim, C.-S. Yoon, C.-I. Lee, M.-Y. Kim, and W.-T. Kim, J. Korean Phys. Soc. 39, 692 (2001).Google Scholar
  15. 15.
    J.-G. Zhang, P.C. Eklund, Z.L. Hua, L.G. Salamaca-Riba, and M. Wuttig, J. Mater. Res. 7, 411 (1992).CrossRefGoogle Scholar
  16. 16.
    R. Panday, P. Lepak, and J.E. Jaffe, Phys. Rev. B 46, 4976 (1992).CrossRefGoogle Scholar
  17. 17.
    Z.J. Chen, H.Y. Xiao, and X.T. Zu, Phys. B 391, 193 (2007).CrossRefGoogle Scholar
  18. 18.
    W.Y. Ching, F. Gan, and M.-Z. Huang, Phys. Rev. B 52, 1596 (1995).CrossRefGoogle Scholar
  19. 19.
    Z. Charifi, H. Baaziz, F. El Haj Hassan, and N. Bouarissa, J. Phys. Condens. Matter 17, 4083 (2005).CrossRefGoogle Scholar
  20. 20.
    Ch Bourouis and A. Meddour, J. Magn. Magn. Mater. 324, 1040 (2012).CrossRefGoogle Scholar
  21. 21.
    A. Haury, A. Wasiela, A. Arnoult, J. Cibert, S. Tatarenko, T. Dietl, Y. Merle d’Aubigné, and S. Tatarenko, Rev. Lett. 79, 511 (1997).CrossRefGoogle Scholar
  22. 22.
    D. Ferrand, J. Cibert, A. Wasiela, C. Bourgognon, S. Tatarenko, G. Fishman, T. Andrearczyk, J. Jaroszynski, S. Kolesnik, T. Dietl, B. Barbara, and D. Dufeu, Phys. Rev. 63, 085201 (2001).CrossRefGoogle Scholar
  23. 23.
    M.H. Gous, A. Meddour, and C. Bourouis, J. Supercond. Nov. Magn. 29, 2849 (2016).CrossRefGoogle Scholar
  24. 24.
    H. Yahi and A. Meddour, J. Magn. Magn. Mater. 401, 116 (2016).CrossRefGoogle Scholar
  25. 25.
    Z. Addadi, B. Doumi, and A. Mokaddem, J. Supercond. Nov. Magn. 30(4), 917 (2016).Google Scholar
  26. 26.
    M. Berber, B. Doumi, A. Mokaddem, Y. Mogulkoc, A. Sayede, and A. Tadger, J. Electron. Mater. 47, 449 (2017).CrossRefGoogle Scholar
  27. 27.
    B. Doumi, A. Mokaddem, F. Dahmane, A. Sayede, and A. Tadjer, RSC Adv. 112, 92328 (2015).CrossRefGoogle Scholar
  28. 28.
    M. Sajjad, H.X. Zhang, N.A. Noor, S.M. Abbas, A. Shaukat, and Q. Mahmood, J. Magn. Magn. Mater. 33, 177 (2013).CrossRefGoogle Scholar
  29. 29.
    F. Ahmadian and N. Makaremi, Solid State Commun. 152, 1660 (2012).CrossRefGoogle Scholar
  30. 30.
    M. Sajjad, H.X. Zhang, N.A. Noor, S.M. Alay-e-Abbas, M. Younas, M. Abid, and A. Shaukat, J. Supercond. Nov. Magn. 27, 2327 (2014).CrossRefGoogle Scholar
  31. 31.
    F. Dahmane, A. Tadjer, B. Doumi, and H. Aourag, J. Supercond. Nov. Magn. 27, 2647 (2014).CrossRefGoogle Scholar
  32. 32.
    B. Doumi, A. Tadjer, F. Dahmane, A. Djedid, A. Yakoubi, Y. Barkat, M. Ould Kada, A. Sayede, and L. Hamada, J. Supercond. Nov. Magn. 27, 93 (2014).CrossRefGoogle Scholar
  33. 33.
    P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, and J. Luitz, WIEN2K: An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties (Austria: Universitat, 2014).Google Scholar
  34. 34.
    P. Hohenberg and W. Kohn, Phys. Rev. B 136, 864 (1964).CrossRefGoogle Scholar
  35. 35.
    W. Kohn and L.J. Sham, Phys. Rev. A 140, 1133 (1965).CrossRefGoogle Scholar
  36. 36.
    J.P. Perdew, S. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).CrossRefGoogle Scholar
  37. 37.
    H.J. Monkhorst and J.D. Pack, Phys. Rev. B 13, 5188 (1976).CrossRefGoogle Scholar
  38. 38.
    J.D. Pack and H.J. Monkhorst, Phys. Rev. B 16, 1748 (1977).CrossRefGoogle Scholar
  39. 39.
    H. Luo, R.G. Greene, K. Ghandehari, T. Li, and A.L. Ruoff, Phys. Rev. B 50, 16232 (1994).CrossRefGoogle Scholar
  40. 40.
    P. Jha, U.K. Sakalle, and S.P. Sanyal, J. Phys. Chem. Solids 59, 599 (1998).CrossRefGoogle Scholar
  41. 41.
    F.D. Muranghan, Proc. Natl. Acad. Sci. U.S.A. 30, 244 (1944).CrossRefGoogle Scholar
  42. 42.
    A. Shaukat, Y. Saeed, N. Ikram, and H. Akbarzadeh, Phys. J. B 62, 439 (2008).Google Scholar
  43. 43.
    G.Y. Gao, K.L. Yao, E. ŞaŞıoğlu, L.M. Sandratskii, Z.L. Liu, and J.L. Jiang, Phys. Rev. B 75, 174442 (2007).CrossRefGoogle Scholar
  44. 44.
    J.A. Gaj, R. Planel, and G. Fishman, Solid State Commun. 29, 861 (1984).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Laboratoire de Physique des MatériauxUniversité 8 Mai 1945 GuelmaGuelmaAlgeria

Personalised recommendations