Journal of Electronic Materials

, Volume 48, Issue 5, pp 3229–3238 | Cite as

Effect of Cobalt Dopant on the Structural, Magnetic and Dielectric Properties of Fe3O4 Nanoparticles Prepared by Co-precipitation Method

  • A. A. AzabEmail author
  • E. M. El-Menyawy


Co-doped magnetite powders were successfully synthesized by the co-precipitation method. Structural, morphological, magnetic and electrical properties were investigated using x-ray diffraction (XRD), Fourier transform infrared (FT-IR), transmission electron microscopy (TEM), a vibrating sample magnetometer (VSM), ac conductivity and dielectric measurements. X-ray diffraction demonstrated that all the synthesized samples are cubic spinel structure with a space group of Fd3 m. Structural parameters such as crystallite size and lattice constant were calculated. FTIR analysis showed the two characteristic ferrite bands around 590 cm−1 and 405 cm−1 which are attributed to the stretching frequency of the tetrahedral and octahedral sites. TEM showed nearly homogeneous spherical shape particles with some irregularity in shape. VSM measurements of the powder exhibited ferromagnetic characteristics. The doping with Co2+ increases the coercivity (Hc) and remanance magnetization (Mr). The ac conductivity, dielectric constant and loss tangent measurements as a function of frequency and temperature show composition dependence.


CoFe2O4 co-precipitation method ferrites magnetic properties 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



  1. 1.
    A.A. Bagade, V.V. Ganbavle, S.V. Mohite, T.D. Dongale, B.B. Sinha, and K.Y. Rajpure, J. Colloid Interface Sci. 497, 181 (2017).CrossRefGoogle Scholar
  2. 2.
    M.H. Abdellatif, G.M. El-Komy, and A.A. Azab, J. Magn. Magn. Mater. 442, 445 (2017).CrossRefGoogle Scholar
  3. 3.
    M.A. Ahmed, A.A. Azab, E.H. El-Khawas, and E. Abd El Bast, Synth. React. Inorg. Metal Org. Chem. 46, 376 (2016).CrossRefGoogle Scholar
  4. 4.
    A.A. Azab and S. Albaaj, J. Ovonic Res. 11, 195 (2015).Google Scholar
  5. 5.
    D. Lee, C.-W. Cho, J.W. Kim, J.-S. Bae, H.-J. Yun, J. Lee, and S. Park, J. Non Cryst. Solids 456, 83 (2017).CrossRefGoogle Scholar
  6. 6.
    Z. Szotek, W.M. Temmerman, D. Kodderitzsch, A. Svane, L. Petit, and H. Winter, Phys. Rev. B 74, 174431 (2006).CrossRefGoogle Scholar
  7. 7.
    Y.L. Huang, W.B. Fan, Y.H. Hou, K.X. Guo, Y.F. Ouyang, and Z.W. Liu, J. Magn. Magn. Mater. 429, 263 (2017).CrossRefGoogle Scholar
  8. 8.
    R. Rani, G. Kumar, K.M. Batoo, and M. Singh, Appl. Phys. A 115, 1401 (2014).CrossRefGoogle Scholar
  9. 9.
    M.A. Gabal, A.A. Al-Juaid, S. El-Rashed, and M.A. Hussein, Mater. Res. Bull. 89, 68 (2017).CrossRefGoogle Scholar
  10. 10.
    A.A. Azab, S.I. El-Dek, and S. Solyman, J. Alloys Compd. 656, 987 (2016).CrossRefGoogle Scholar
  11. 11.
    L. Ajroudi, N. Mliki, L. Bessais, V. Madigou, S. Villain, and Ch Leroux, Mater. Res. Bull. 59, 49 (2014).CrossRefGoogle Scholar
  12. 12.
    S. Rana, J. Philip, and B. Raj, Mater. Chem. Phys. 124, 264 (2010).CrossRefGoogle Scholar
  13. 13.
    A.A. Azab, N. Helmy, and S. Albaaj, Mater. Res. Bull. 66, 249 (2015).CrossRefGoogle Scholar
  14. 14.
    H. Emadi and A.N. Kharat, J. Ind. Eng. Chem. 21, 951 (2015).CrossRefGoogle Scholar
  15. 15.
    L.X. Phua, F. Xu, Y.G. Ma, and C.K. Ong, Thin Solid Films 517, 5858 (2009).CrossRefGoogle Scholar
  16. 16.
    N. Kumari, V. Kumar, and S.K. Singh, Ceram. Int. 40, 12199 (2014).CrossRefGoogle Scholar
  17. 17.
    A.A. Pandit, S.S. More, R.G. Dorik, and K.M. Jadhav, Bull. Mater. Sci. 26, 517 (2003).CrossRefGoogle Scholar
  18. 18.
    A.L. Patterson, Phys. Rev. 56, 978 (1939).CrossRefGoogle Scholar
  19. 19.
    A.K. Singh, Advanced x-ray Techniques in Research And Industries (Amsterdam: IOS Press Inc, 2005).Google Scholar
  20. 20.
    B.D. Cullity, Elements of x-Ray Diffraction (Boston: Addison-Wesley Publishing Company Inc, 1956), p. 316.Google Scholar
  21. 21.
    M.A. Ahmed, H.H. Afify, I.K. ElZawawi, and A.A. Azab, J. Magn. Magn. Mater. 324, 2199 (2012).CrossRefGoogle Scholar
  22. 22.
    M.A. Ahmed, E. Ateia, and S.I. El Dek, Vib. Spectrosc. 30, 69 (2002).CrossRefGoogle Scholar
  23. 23.
    S.C. Watawe, B.D. Sutar, B.D. Sarwade, and B.K. Chougule, Int. J. Inorg. Mater. 3, 819 (2001).CrossRefGoogle Scholar
  24. 24.
    M.G. Naseri, E.B. Saion, M. Hashim, A.H. Shaari, and H.A. Ahangar, Solid State Commun. 151, 1031 (2011).CrossRefGoogle Scholar
  25. 25.
    I. Feijoo, M. Cabeza, P. Merino, G. Pena, M.C. Pérez, S. Cruz, and P. Rey, Powder Technol. 343, 19 (2019).CrossRefGoogle Scholar
  26. 26.
    V. Uvarov and I. Popov, Mater. Charact. 85, 111 (2013).CrossRefGoogle Scholar
  27. 27.
    U. Dutta, D. Ghosh, A. Haque, P.S. Walke, N.E. Mordvinova, O.I. Lebedev, K. Pal, A. Gayen, A.K. Kundu, and M.M. Seikh, J. Magn. Magn. Mater. 464, 132 (2018).CrossRefGoogle Scholar
  28. 28.
    S.U. Bhasker, G.S.V.R.K. Choudary, and M.V.R. Reddy, J. Magn. Magn. Mater. 454, 349 (2018).CrossRefGoogle Scholar
  29. 29.
    M. Kamran, A. Ullah, S. Rahman, A. Tahir, K. Nadeem, M. Anis ur Rehman, and S. Hussain, J. Magn. Magn. Mater. 433, 178 (2017).CrossRefGoogle Scholar
  30. 30.
    R. Mazumder, S. Ghosh, P. Mondal, D. Bhattacharya, S. Dasgupta, N. Das, and A. Sen, J. Appl. Phys. 100, 033908 (2006).CrossRefGoogle Scholar
  31. 31.
    Neus Domingo, Fernando Luis, Motohiro Nakano, Maria Muntó, Jordi Gómez, Jesús Chaboy, Nora Ventosa, Javier Campo, Jaume Veciana, and Daniel Ruiz-Molina, Phys. Rev. B 79, 214404 (2009).CrossRefGoogle Scholar
  32. 32.
    G. Herzer, IEEE Trans. Magn. 26, 1397 (1990).CrossRefGoogle Scholar
  33. 33.
    Y. LiaW, G.C. Gong, C.M. Hadjipanayis, K.J. Sorensen, V. Klabunde, A.Kostikas Papaefthymiou, and A. Simopoulos, J. Magn. Magn. Mater. 130, 261 (1994).CrossRefGoogle Scholar
  34. 34.
    B. Ndlovu, J.Z. Msomi, and T. Moyo, J. Alloys Compd. 745, 187 (2018).CrossRefGoogle Scholar
  35. 35.
    T. Tajiri, N. Terashita, K. Hamamoto, H. Deguchi, M. Mito, Y. Morimoto, K. Konishi, and A. Kohno, J. Magn. Magn. Mater. 345, 288 (2013).CrossRefGoogle Scholar
  36. 36.
    S.A. Saafan, S.T. Assar, and S.F. Mansour, J. Alloys Compd. 542, 192 (2012).CrossRefGoogle Scholar
  37. 37.
    K. Maaz, A. Mumtaz, S.K. Hasanain, and A. Ceylan, J. Magn. Magn. Mater. 308, 289 (2007).CrossRefGoogle Scholar
  38. 38.
    C.N. Chinnasamy, B. Jeyadevan, K. Shinoda, K. Tohji, D.J. Djayaprawira, M. Takahashi, R.J. Joseyphus, and A. Narayanasamy, Appl. Phys. Lett. 83, 2862 (2003).CrossRefGoogle Scholar
  39. 39.
    V. Verma, V. Pandey, V.N. Shukla, S. Annapoorn, and R.K. Kotnala, Solid State Commun. 149, 1726 (2009).CrossRefGoogle Scholar
  40. 40.
    M.H. Abdellatif, A.A. Azab, and A.M. Moustafa, J. Electron. Mater. 47, 378 (2018).CrossRefGoogle Scholar
  41. 41.
    S.A. Mazen and N.I. Abu-Elsaad, Appl. Nanosci. 5, 105 (2015).CrossRefGoogle Scholar
  42. 42.
    S. Thankachan, S. Xavier, B. Jacob, and E.M. Mohammed, J. Exp. Nano sci. 8, 347 (2013).CrossRefGoogle Scholar
  43. 43.
    F.S. Moghadasi, V. Daadmehr, and M. Kashfi, J. Magn. Magn. Mater. 416, 103 (2016).CrossRefGoogle Scholar
  44. 44.
    M.A. Ahmed, E. Ateia, and S.I. El-Dek, Mater. Lett. 57, 4256 (2003).CrossRefGoogle Scholar
  45. 45.
    L.-Z. Li, L. Peng, X.-X. Zhong, R. Wang, and X.-Q. Tu, J. Magn. Magn. Mater. 419, 407 (2016).CrossRefGoogle Scholar
  46. 46.
    M. Houshiar and L. Jamilpanah, Mater. Res. Bull. 98, 213 (2018).CrossRefGoogle Scholar
  47. 47.
    MdT Rahman and C.V. Ramana, Ceram. Int. 40, 14533 (2014).CrossRefGoogle Scholar
  48. 48.
    B. Ramesh and D. Ravinder, Mater. Lett. 62, 2043 (2008).CrossRefGoogle Scholar
  49. 49.
    A. Lungu, I. Malaescu, C.N. Marin, P. Vlazan, and P. Sfirloaga, Phys. B 462, 80 (2015).CrossRefGoogle Scholar
  50. 50.
    S.I. El-Dek, M.A. Ahmed, A.A. Eltawil, and M.S. Afify, Mater. Sci. Pol. 35, 519 (2017).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Solid State Electronics Laboratory, Solid State Physics Department, Physics Research DivisionNational Research CentreGizaEgypt

Personalised recommendations