Journal of Electronic Materials

, Volume 48, Issue 5, pp 3297–3303 | Cite as

Exchange Bias Enhancement and Magnetic Proximity Effect in FeVO4-Fe3O4 Nanoparticles

  • Ehab Abdelhamid
  • Suvra S. Laha
  • Ambesh Dixit
  • Gholam Abbas Nazri
  • Onattu D. Jayakumar
  • Boris NadgornyEmail author


We study the behavior of the exchange bias (EB) and the blocking temperature in an antiferromagnetic FeVO4–ferrimagnetic Fe3O4 nanocomposite system upon annealing in Ar atmosphere. Surprisingly, the blocking temperature of post-annealed samples increased to ∼ 50 K, more than two-fold compared the Néel temperature (TN = 22 K) of individual FeVO4 nanoparticles. This significant enhancement of the blocking temperature was accompanied by the corresponding increase of EB, from ∼ 50 Oe in as-prepared samples to ∼ 110 Oe in post-annealed samples. The temperature dependence of EB can be described by two approximately linear regions with different slopes, with an inflection point at T ∼ 21 K coinciding with the Néel temperature of FeVO4 nanoparticles. The region above the inflection point with non-zero EB is characterized by a weaker temperature dependence and is expanded well beyond TN. The x-ray photoemission spectroscopy measurements indicate that the surface of post-annealed Fe3O4 particles becomes oxygen deficient, which leads to a modification of the electronic, magnetic and morphological properties of the FeVO4/Fe3O4 interface. We associate this unusual behavior with a magnetic proximity effect, in which the ordering temperature of the antiferromagnetic FeVO4 nanoparticles and the corresponding exchange bias are strongly affected by the adjacent ferrimagnetic Fe3O4 layer.


Magnetic nanocomposites exchange bias Néel temperature 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work is supported by the National Science Foundation DMR-1306449 Grant. We thank Kirill Belaschenko and Manh-Huong Phan for many useful suggestions. This work is dedicated to the memory of Prof. Gavin J. Lawes.


  1. 1.
    T. Jonsson, J. Mattsson, C. Djurberg, F.A. Khan, P. Nordblad, and P. Svedlindh, Phys. Rev. Lett. 75, 4138 (1995).CrossRefGoogle Scholar
  2. 2.
    E. Winkler, R.D. Zysler, M.V. Mansilla, D. Fiorani, D. Rinaldi, M. Vasilakaki, and K.N. Trohidou, Nanotechnology 19, 185702 (2008).CrossRefGoogle Scholar
  3. 3.
    R.J. Tackett, A.W. Bhuiya, and C.E. Botez, Nanotechnology 20, 445705 (2009).CrossRefGoogle Scholar
  4. 4.
    B. Aslibeiki, P. Kameli, H. Salamati, M. Eshraghi, and T. Tahmasebi, J. Magn. Magn. Mater. 322, 2929 (2010).CrossRefGoogle Scholar
  5. 5.
    S.S. Laha, R. Mukherjee, and G. Lawes, Mater. Res. Expres 1, 025032 (2014).CrossRefGoogle Scholar
  6. 6.
    Q.A. Pankhurst, J. Connolly, S.K. Jones, and J.J. Dobson, J. Phys. D Appl. Phys. 36, R167 (2003).CrossRefGoogle Scholar
  7. 7.
    A. Gupta and M. Gupta, Bio Mater. 26, 3995 (2005).Google Scholar
  8. 8.
    F. Chen, L. Zhang, Q. Chen, Y. Zhang, and Z. Zhang, Chem. Commun. 46, 8633 (2010).CrossRefGoogle Scholar
  9. 9.
    H. Arora, M. Jensen, Y. Yuan, A. Wu, S. Vogt, T. Paunesku, and G. Woloschak, Cancer Res. 72, 769 (2012).CrossRefGoogle Scholar
  10. 10.
    M. Arachchige, S. Laha, A. Naik, K. Lewis, R. Naik, and B. Jena, Micron 92, 55 (2017).CrossRefGoogle Scholar
  11. 11.
    P. Kumar and K. Mandal, J. Appl. Phys. 101, 113906 (2007).CrossRefGoogle Scholar
  12. 12.
    Q.K. Ong, A. Wei, and X. Lin, Phys. Rev. B 80, 134418 (2009).CrossRefGoogle Scholar
  13. 13.
    X. Sun, N.F. Huls, A. Sigdel, and S. Sun, Nano Lett. 12, 246 (2011).CrossRefGoogle Scholar
  14. 14.
    R. Das, J. Robles, M. Glassell, V. Kalappattil, M.H. Phan, and H. Srikanth, J. Electron. Mater. 6, 056719 (2018).Google Scholar
  15. 15.
    J. Nogués and I.K. Schuller, J. Magn. Magn. Mater. 192, 203 (1999).CrossRefGoogle Scholar
  16. 16.
    M.H. Phan, J. Alonso, H. Khurshid, P. Lampen-Kelley, S. Chandra, K.S. Repa, Z. Nemati, R. Das, O. Iglesias, and H. Srikanth, Nanomater. 6, 221 (2016).CrossRefGoogle Scholar
  17. 17.
    W.H. Meiklejohn and C.P. Bean, Phys. Rev. 102, 1413 (1956).CrossRefGoogle Scholar
  18. 18.
    Z.M. Tian, S.L. Yuan, L. Liu, S.Y. Yin, L.C. Jia, P. Li, S.X. Huo, and J.Q. Li, J. Phys. D Appl. Phys. 42, 035008 (2009).CrossRefGoogle Scholar
  19. 19.
    G. Lavorato, E. Winkler, A. Ghirri, E. Lima, D. Peddis, H.E. Troiani, D. Fiorani, E. Agostinelli, D. Rinaldi, and R.D. Zysler, Phys. Rev. B 94, 054432 (2016).CrossRefGoogle Scholar
  20. 20.
    M. Feygenson, E. Formo, K. Freeman, N. Schieber, Z. Gai, and A. Rondinone, J. Phys. Chem. C 119, 26219 (2015).CrossRefGoogle Scholar
  21. 21.
    P.J. Van der Zaag, Y. Ijiri, J.A. Borchers, L.F. Feiner, R.M. Wolf, J.M. Gaines, R.W. Erwin, and M.A. Verheijen, Phys. Rev. Lett. 84, 6102 (2000).CrossRefGoogle Scholar
  22. 22.
    G. Salazar-Alvarez, J. Sort, S. Surinach, M.D. Baró, and J. Nogués, JACS 129, 9102 (2007).CrossRefGoogle Scholar
  23. 23.
    X.Y. Lang, W.T. Zheng, and Q. Jiang, Nanotechnol. 18, 155701 (2007).CrossRefGoogle Scholar
  24. 24.
    J. Borchers, R. Erwin, S. Berry, D. Lind, J. Ankner, E. Lochner, K. Shaw, and D. Hilton, Phys. Rev. B 51, 8276 (1995).CrossRefGoogle Scholar
  25. 25.
    E.A. Tereshina, Z. Bao, L. Havela, S. Daniš, C. Kuebel, T. Gouder, and R. Caciuffo, Appl. Phys. Lett. 105, 122405 (2014).CrossRefGoogle Scholar
  26. 26.
    P.K. Manna and S.M. Yusuf, Phys. Rep. 535, 61 (2014).CrossRefGoogle Scholar
  27. 27.
    Q.K. Ong, X. Lin, and A. Wei, J. Phys. Chem. C 115, 2665 (2011).CrossRefGoogle Scholar
  28. 28.
    H. Ohldag, A. Scholl, F. Nolting, E. Arenholz, S. Maat, A.T. Young, M. Carey, and J. Stöhr, Phys. Rev. Lett. 91, 017203 (2003).CrossRefGoogle Scholar
  29. 29.
    M. Ali, P. Adie, C. Marrows, D. Greig, B. Hickey, and R. Stamps, Nat. Mater. 6, 70 (2007).CrossRefGoogle Scholar
  30. 30.
    K. Lenz, S. Zander, and W. Kuch, Phys. Rev. Lett. 98, 237201 (2007).CrossRefGoogle Scholar
  31. 31.
    M.D. Stiles and R.D. McMichael, Phys. Rev. B 60, 12950 (1999).CrossRefGoogle Scholar
  32. 32.
    A. Dixit and G. Lawes, J. Phys. Condens. Matter 21, 456003 (2009).CrossRefGoogle Scholar
  33. 33.
    S.S. Laha, R. Regmi, and G. Lawes, J. Phys. D Appl. Phys. 46, 325004 (2013).CrossRefGoogle Scholar
  34. 34.
    L. Zhao, M.P. Wu, K.W. Yeh, and M.K. Wu, Solid State Commun. 151, 1728 (2011).CrossRefGoogle Scholar
  35. 35.
    A. Dixit, B. Ramchandran, Y.K. Kuo, and G. Lawes, IEEE Trans. Magn. 51, 1 (2015).CrossRefGoogle Scholar
  36. 36.
    S.S. Laha, R.J. Tackett, and G. Lawes, Phys. B 448, 69 (2014).CrossRefGoogle Scholar
  37. 37.
    S.S. Laha, E. Abdelhamid, M.P. Arachchige, A. Kumar, and A. Dixit, J. Am. Ceream. Soc. 100, 1524 (2017).Google Scholar
  38. 38.
    Y. Long, Z. Chen, J. Duvail, Z. Zhang, and M. Wan, Phys. B 370, 121 (2005).CrossRefGoogle Scholar
  39. 39.
    R. Das, J. Alonso, Z.N. Porshokouh, V. Kalappattil, D. Torres, M. Phan, E. Garaio, J. García, J.S. Llamazares, and H. Srikanth, J. Phys. Chem. C 120, 10086 (2016).CrossRefGoogle Scholar
  40. 40.
    G.F. Goya, T.S. Berquo, F.C. Fonseca, and M.P. Morales, J. Appl. Phys. 94, 3520 (2003).CrossRefGoogle Scholar
  41. 41.
    A.P. Malozemoff, Phys. Rev. B 35, 3679 (1987).CrossRefGoogle Scholar
  42. 42.
    Z. Swiatkowska-Warkocka, K. Kawaguchi, H. Wang, Y. Katou, and N. Koshizaki, Nanoscale Res. Lett. 6, 1 (2011).CrossRefGoogle Scholar
  43. 43.
    A.P. Grosvenor, B.A. Kobe, M.C. Biesinger, and N.S. McIntyre, Surf. Interface Anal. 36, 1564 (2004).CrossRefGoogle Scholar
  44. 44.
    N.S. McIntyre and D.G. Zetaruk, Anal. Chem. 49, 1521 (1977).CrossRefGoogle Scholar
  45. 45.
    A. Pineau, N. Kanari, and I. Gaballah, Thermochim. Acta 456, 75 (2007).CrossRefGoogle Scholar
  46. 46.
    S.L. Ding, R. Wu, J.B. Fu, X. Wen, H.L. Du, S.Q. Liu, J.Z. Han, Y.C. Yang, C.S. Wang, D. Zhou, and J.B. Yang, Appl. Phys. Lett. 107, 172404 (2015).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Department of Physics and AstronomyWayne State UniversityDetroitUSA
  2. 2.Department of PhysicsIndian Institute of Technology JodhpurRajasthanIndia
  3. 3.Department of Electrical and Computer EngineeringWayne State UniversityDetroitUSA
  4. 4.Chemistry DivisionBhabha Atomic Research CentreMumbaiIndia

Personalised recommendations