Journal of Electronic Materials

, Volume 48, Issue 5, pp 3050–3058 | Cite as

Tannic Acid-Assisted Fabrication of N/B-Codoped Hierarchical Carbon Nanofibers from Electrospun Zeolitic Imidazolate Frameworks as Free-Standing Electrodes for High-Performance Supercapacitors

  • Qin Li
  • Mengchen Wu
  • Jing Zhao
  • Qiufeng Lü
  • Lei HanEmail author
  • Rui LiuEmail author


An effective synthetic route has been reported to prepare N/B co-doped hierarchical carbon nanofibers (NB-HCNFs) as free-standing electrodes for high-performance supercapacitors. Zeolitic imidazolate framework (ZIF-8) nanoparticles were embedded into polyacrylonitrile (PAN) through electrospinning to obtain PAN/ZIF-8 nanofibers. Tannic acid (TA) acted as a coating layer for PAN/ZIF-8 to generate hollow ZIF-8 core structures within the fiber and an intermediate to coordinate with 1,4-benzenediboronicacid (BDBA). After carbonization, the obtained flexible N/B co-doped hierarchical porous carbon nanofibers were used as free-standing electrodes for supercapacitors. Thus, unique nanostructure and the existence of heteroatoms could offer remarkably improved electrochemical properties with a high specific capacitance (288.2 F g−1 at a current density of 1 A g−1) and good cycling stability (96.9% capacitance retention over 8000 cycles at 10 A g−1). In addition, the NB-HCNFs films were assembled into symmetric supercapacitors, which displayed a high energy density and excellent stability (99.7% capacitance retention after 8000 cycles at 10 A g−1). The synthetic method might provide an effective and facile strategy to prepare a variety of hierarchical doped carbon nanomaterials for energy storage.


Doping hierarchical carbon nanofibers tannic acid supercapacitors 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



R.L. acknowledges Shanghai Municipal Natural Science Foundation (No. 17ZR1432200), National Natural Science Foundation of China (No. 21774095), the Open Research Fund of State Key Laboratory of Structural Chemistry (No. 20170014), the Fundamental Research Funds for the Central Universities (No. 0400219376), the start-up funding from Tongji University and the Young Thousand Talented Program. L.H. acknowledges the support by the National Natural Science Foundation of China (No. 21471086), and the K.C. Wong MagnaFund in Ningbo University.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11664_2019_7075_MOESM1_ESM.pdf (2.2 mb)
Supplementary material 1 (PDF 2211 kb)


  1. 1.
    X.H. Cao, Y.M. Shi, G. Lu, X. Huang, Q.Y. Yan, Q.C. Zhang, and H. Zhang, Small 7, 3163 (2011).CrossRefGoogle Scholar
  2. 2.
    X.L. Fang, J. Zang, X.L. Wang, M.S. Zheng, and N.F. Zheng, J. Mater. Chem. A 2, 6191 (2014).CrossRefGoogle Scholar
  3. 3.
    J. Tan, Y.L. Han, L. He, Y.X. Dong, X.X. Xu, D.G. Liu, H.W. Yan, Q. Yu, C.Y. Huang, and L.Q. Mai, J. Mater. Chem. A 5, 23620 (2017).CrossRefGoogle Scholar
  4. 4.
    J. Wei, D.D. Zhou, Z.K. Sun, Y.H. Deng, Y.Y. Xia, and D.Y. Zhao, Adv. Funct. Mater. 23, 2322 (2013).CrossRefGoogle Scholar
  5. 5.
    Z.L. Wang, R. Guo, G.R. Li, H.L. Lu, Z.Q. Liu, F.M. Xiao, M.Q. Zhang, and Y.X. Tong, J. Mater. Chem. 22, 2401 (2012).CrossRefGoogle Scholar
  6. 6.
    Y.M. Tan, C.F. Xu, G.X. Chen, Z.H. Liu, M. Ma, Q.J. Xie, N.F. Zheng, and S.Z. Yao, ACS Appl. Mater. Interfaces. 5, 2241 (2013).CrossRefGoogle Scholar
  7. 7.
    J.H. Zhong, A.L. Wang, G.R. Li, Y.N. Yang, C. Xu, L.C. Zhou, and Z. Yu, J. Mater. Chem. 22, 5656 (2012).CrossRefGoogle Scholar
  8. 8.
    M.Z. Dai, L.Y. Song, J.T. LaBelle, and B.D. Vogt, Chem. Mater. 23, 2869 (2011).CrossRefGoogle Scholar
  9. 9.
    C. Zhan, P.F. Zhang, S. Dai, and D.E. Jiang, ACS Energy Lett. 1, 1241 (2016).CrossRefGoogle Scholar
  10. 10.
    P.F. Zhang, Z.A. Qiao, Z.Y. Zhang, S. Wan, and S. Dai, J. Mater. Chem. A 2, 12262 (2014).CrossRefGoogle Scholar
  11. 11.
    Z. Zhu, Y. Hu, H. Jiang, and C. Li, J. Power Sources 246, 402 (2014).CrossRefGoogle Scholar
  12. 12.
    Y.P. Zhai, Y.Q. Dou, D.Y. Zhao, P.F. Fulvio, R.T. Mayes, and S. Dai, Adv. Mater. 23, 4828 (2011).CrossRefGoogle Scholar
  13. 13.
    P.F. Zhang, Z.Y. Zhang, J.H. Chen, and S. Dai, Carbon 93, 39 (2015).CrossRefGoogle Scholar
  14. 14.
    X.Q. Wang, C.G. Liu, D. Neff, P.F. Fulvio, R.T. Mayes, A. Zhamu, Q. Fang, G.R. Chen, H.M. Meyer, B.Z. Jang, and S. Dai, J. Mater. Chem. A 1, 7920 (2013).CrossRefGoogle Scholar
  15. 15.
    D. Feng, Y.Y. Lv, Z.X. Wu, Y.Q. Dou, L. Han, Z.K. Sun, Y.Y. Xia, G.F. Zheng, and D.Y. Zhao, J. Am. Chem. Soc. 133, 15148 (2011).CrossRefGoogle Scholar
  16. 16.
    D. Saha, Y.C. Li, Z.H. Bi, J.H. Chen, J.K. Keum, D.K. Hensley, H.A. Grappe, H.M. Meyer, S. Dai, M.P. Paranthaman, and A.K. Naskar, Langmuir 30, 900 (2014).CrossRefGoogle Scholar
  17. 17.
    H.J. Liu, W.J. Cui, L.H. Jin, C.X. Wang, and Y.Y. Xia, J. Mater. Chem. 19, 3661 (2009).CrossRefGoogle Scholar
  18. 18.
    Y.W. Zhu, S. Murali, M.D. Stoller, K.J. Ganesh, W.W. Cai, P.J. Ferreira, A. Pirkle, R.M. Wallace, K.A. Cychosz, M. Thommes, D. Su, E.A. Stach, and R.S. Ruoff, Science 332, 1537 (2011).CrossRefGoogle Scholar
  19. 19.
    F.B. Su, C.K. Poh, J.S. Chen, G.W. Xu, D. Wang, Q. Li, J.Y. Lin, and X.W. Lou, Energy Environ. Sci. 4, 717 (2011).CrossRefGoogle Scholar
  20. 20.
    L.F. Chen, Z.H. Huang, H.W. Liang, H.L. Gao, and S.H. Yu, Adv. Funct. Mater. 24, 5104 (2014).CrossRefGoogle Scholar
  21. 21.
    H. Chen, Y.C. Xiong, T. Yu, P.F. Zhu, X.Z. Yan, Z. Wang, and S.Y. Guan, Carbon 113, 266 (2017).CrossRefGoogle Scholar
  22. 22.
    H. Chen, M. Zhou, Z. Wang, S.Y. Zhao, and S.Y. Guan, Electrochim. Acta 148, 187 (2014).CrossRefGoogle Scholar
  23. 23.
    Z. Qiang, Y.F. Xia, X.H. Xia, and B.D. Vogt, Chem. Mater. 29, 10178 (2017).CrossRefGoogle Scholar
  24. 24.
    Z. Wang, T.T. Yan, J.H. Fang, L.Y. Shi, and D.S. Zhang, J. Mater. Chem. A 4, 10858 (2016).CrossRefGoogle Scholar
  25. 25.
    G.L. Tian, M.Q. Zhao, D. Yu, X.Y. Kong, J.Q. Huang, Q. Zhang, and F. Wei, Small 10, 2251 (2014).CrossRefGoogle Scholar
  26. 26.
    D.C. Guo, J. Mi, G.P. Hao, W. Dong, G. Xiong, W.C. Li, and A.H. Lu, Energy Environ. Sci. 6, 652 (2013).CrossRefGoogle Scholar
  27. 27.
    X.L. Zhai, Y. Song, J.Q. Liu, P. Li, M. Zhong, C. Ma, H.Q. Wang, Q.G. Guo, and L.J. Zhi, J. Electrochem. Soc. 159, 177 (2012).CrossRefGoogle Scholar
  28. 28.
    H.L. Guo and Q.M. Gao, J. Power Sources 186, 551 (2009).CrossRefGoogle Scholar
  29. 29.
    G.Q. Wang, J. Zhang, S. Kuang, J. Zhou, W. Xing, and S.P. Zhuo, Electrochim. Acta 153, 273 (2015).CrossRefGoogle Scholar
  30. 30.
    Q. Li, R.R. Jiang, Y.Q. Dou, Z.X. Wu, T. Huang, D. Feng, J.P. Yang, A.S. Yu, and D.Y. Zhao, Carbon 4, 1248 (2011).CrossRefGoogle Scholar
  31. 31.
    Y.H. Wang, J.R. Zeng, J. Li, X.Q. Cui, A.M. Al-Enizi, L.J. Zhang, and G.F. Zheng, J. Mater. Chem. A 3, 16382 (2015).CrossRefGoogle Scholar
  32. 32.
    B. You, J. Yang, Y.Q. Sun, and Q.D. Su, Chem. Commun. 47, 12364 (2011).CrossRefGoogle Scholar
  33. 33.
    L.F. Chen, Y. Lu, L. Yu, and X.W. Lou, Energy Environ. Sci. 10, 1777 (2017).CrossRefGoogle Scholar
  34. 34.
    J.L. Liu, L.L. Zhang, H.B. Wu, J.Y. Lin, Z.X. Shen, and X.W. Lou, Energy Environ. Sci. 7, 3709 (2014).CrossRefGoogle Scholar
  35. 35.
    J.F. Chen, Y.L. Han, X.H. Kong, X.Z. Deng, H.J. Park, Y.L. Guo, S. Jin, Z.K. Qi, Z. Lee, Z.H. Qiao, R.S. Ruoff, and H.X. Ji, Angew. Chem. Int. Ed. 55, 13822 (2016).CrossRefGoogle Scholar
  36. 36.
    M. Hu, Y. Ju, K. Liang, T. Suma, J.W. Cui, and F. Caruso, Adv. Funct. Mater. 26, 5827 (2016).CrossRefGoogle Scholar
  37. 37.
    H. Wang, W. Zhu, Y. Ping, C. Wang, N. Gao, X.P. Yin, C. Gu, D. Ding, C.J. Brinker, and G.T. Li, ACS Appl. Mater. Interfaces. 9, 14258 (2017).CrossRefGoogle Scholar
  38. 38.
    R. Liu, Y. Guo, G. Odusote, and R.D. Priestly, ACS Appl. Mater. Interfaces. 5, 9167 (2013).CrossRefGoogle Scholar
  39. 39.
    P.L. Erdem, E.A. Bursali, and M. Yurdakoc, Environ. Prog. Sustain. 32, 1036 (2013).CrossRefGoogle Scholar
  40. 40.
    R. Narasimman and K. Prabhakaran, Carbon 55, 305 (2013).CrossRefGoogle Scholar
  41. 41.
    Q.Y. Xia, H. Yang, M. Wang, M. Yang, Q.B. Guo, L.M. Wan, H. Xia, and Y. Yu, Adv. Energy Mater. 7, 1701336 (2017).CrossRefGoogle Scholar
  42. 42.
    M.C. Wu, C.L. Li, J. Zhao, Y. Ling, and R. Liu, Dalton Trans. 47, 7812 (2018).CrossRefGoogle Scholar
  43. 43.
    Z. Ling, Z.Y. Wang, M.D. Zhang, C. Yu, G. Wang, Y.F. Dong, S.H. Liu, Y.W. Wang, and J.S. Qiu, Adv. Funct. Mater. 26, 111 (2016).CrossRefGoogle Scholar
  44. 44.
    L. Qie, W.M. Chen, H.H. Xu, X.Q. Xiong, Y. Jiang, F. Zou, X.L. Hu, Y. Xin, Z.L. Zhang, and Y.H. Huang, Energy Environ. Sci. 6, 2497 (2013).CrossRefGoogle Scholar
  45. 45.
    T. Yoon, C. Chae, Y.K. Sun, X. Zhao, H.H. Kungc, and J.K. Lee, J. Mater. Chem. 21, 17325 (2011).CrossRefGoogle Scholar
  46. 46.
    Z.Z. Benabithe, F.C. Marín, and C.M. Castilla, J. Power Sources 219, 80 (2012).CrossRefGoogle Scholar
  47. 47.
    Z. Chen, L.Q. Hou, Y. Cao, Y.S. Tang, and Y.F. Li, Appl. Surf. Sci. 435, 937 (2018).CrossRefGoogle Scholar
  48. 48.
    C. Moreno-Castilla, M.B. Dawidziuk, F. Carrasco-Marín, and Z. Zapata-Benabithe, Carbon 49, 3808 (2011).CrossRefGoogle Scholar
  49. 49.
    T. Tomko, R. Rajagopalan, P. Aksoy, and H.C. Foley, Electrochim. Acta 56, 5369 (2011).CrossRefGoogle Scholar
  50. 50.
    Z. Ling, G. Wang, M.D. Zhang, X.M. Fan, C. Yu, J. Yang, N. Xiao, and J.S. Qiu, Nanoscale 7, 5120 (2015).CrossRefGoogle Scholar
  51. 51.
    Z.S. Wu, A. Winter, L. Chen, Y. Sun, A. Turchanin, X. Feng, and K. Müllen, Adv. Mater. 24, 5130 (2012).CrossRefGoogle Scholar
  52. 52.
    N.D. Kim, D.B. Buchholz, G. Casillas, M. José-Yacaman, and R.P. Chang, Adv. Funct. Mater. 24, 4186 (2014).CrossRefGoogle Scholar
  53. 53.
    C.H. Wang, C. Liu, J.S. Li, X.Y. Sun, J.Y. Shen, W.Q. Han, and L.J. Wang, Chem. Commun. 53, 1751 (2017).CrossRefGoogle Scholar
  54. 54.
    L.F. Chen, X.D. Zhang, H.W. Liang, M.G. Kong, Q.F. Guan, P. Chen, Z.Y. Wu, and S.H. Yu, ACS Nano 6, 7092 (2012).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Ministry of Education Key Laboratory of Advanced Civil Engineering Material, School of Materials Science and Engineering, and Institute for Advanced StudyTongji UniversityShanghaiChina
  2. 2.State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science and Chemical EngineeringNingbo UniversityNingboChina
  3. 3.State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhouChina
  4. 4.College of Materials Science and EngineeringFuzhou UniversityFuzhouChina

Personalised recommendations