Advertisement

Journal of Electronic Materials

, Volume 48, Issue 5, pp 3220–3228 | Cite as

Effect of Substrate Temperature on Properties of Nickel Oxide (NiO) Thin Films by Spray Pyrolysis

  • Ranjit S. Kate
  • Suraj C. Bulakhe
  • Ramesh J. DeokateEmail author
Article
  • 27 Downloads

Abstract

NiO thin films were deposited on a glass substrate and investigated for the physical properties optimized through substrate temperature (350–390°C) using a spray pyrolysis technique. The effect of substrate temperature on deposited NiO thin film was studied by thermogravimetric analysis and differential thermal analysis, X-diffraction (XRD), field electron scanning electron microscopy, optical absorption and electrical measurement techniques. XRD analysis indicates that NiO thin films are of a polycrystalline cubic structure. Optical properties are calculated with help of transmittance and absorbance data in the wavelength range between 200 nm and 900 nm. The optical band gap energy values increased from 3.1 eV to 4.0 eV with substrate temperature. Further, the extinction coefficient, refractive index, and real and imaginary parts of dielectric constant and optical conductivities of NiO thin films were calculated. The electrical resistivity measurement shows conductivity of the NiO thin film increased with increase in substrate temperature.

Keywords

NiO spray composition electrical properties semiconducting behavior 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

References

  1. 1.
    S.P. Jahromi, A. Pandikumar, B.T. Goh, Y.S. Lim, W.J. Basirun, H.N. Lim, and N.M. Huang, RSC Adv. 5, 14010 (2015).CrossRefGoogle Scholar
  2. 2.
    R. Romero, F. Martin, J.R. Ramos-Barrado, and D. Leinen, Thin Solid Films 518, 4499 (2010).CrossRefGoogle Scholar
  3. 3.
    S.K. Meher, P. Justin, and G.R. Rao, Nanoscale 3, 683 (2011).CrossRefGoogle Scholar
  4. 4.
    G. Wang, L. Zhang, and J. Zhang, Chem. Soc. Rev. 41, 797 (2012).CrossRefGoogle Scholar
  5. 5.
    R.S. Kate, S.A. Khalate, and R.J. Deokate, J. Anal. Appl. Pyrolysis 125, 289 (2017).CrossRefGoogle Scholar
  6. 6.
    A. Hakim, J. Hossain, and K.A. Khan, Renew. Energy 34, 2625 (2009).CrossRefGoogle Scholar
  7. 7.
    I. Hotoy, J. Huran, L. Spiess, R. Cpakovic, and S. Hascik, Vacuum 58, 300 (2007).CrossRefGoogle Scholar
  8. 8.
    H. Sato, T. Minami, S. Takato, and T. Yamada, Thin Solid Films 236, 27 (1993).CrossRefGoogle Scholar
  9. 9.
    A. Boukhachem, R. Boughalmi, M. Karyaoui, A. Mhamdi, R. Chtourou, K. Boubaker, and M. Amlouk, Mater. Sci. Eng. B 188, 72 (2014).CrossRefGoogle Scholar
  10. 10.
    E. Fujji, A. Tomozawa, H. Torii, and R. Takayanta, Jpn. J. Appl. Phys. 35, 328 (1996).CrossRefGoogle Scholar
  11. 11.
    H.I. Chen, T.M. Lu, and W.S. Hwang, Surf. Coat. Technol. 198, 138 (2005).CrossRefGoogle Scholar
  12. 12.
    P.S. Patil and L.D. Kadam, Appl. Surf. Sci. 199, 211 (2002).CrossRefGoogle Scholar
  13. 13.
    M.A. Wittenhaur and L.L. Van Zandt, Philos. Mag. B 46, 659 (1982).CrossRefGoogle Scholar
  14. 14.
    S.R. Nalage, M.A. Chougule, S. Sen, P.B. Joshi, and V.B. Patil, Thin Solid Films 520, 4835 (2012).CrossRefGoogle Scholar
  15. 15.
    F. Vera, R. Schrebler, E. Munoz, C. Suarez, P. Cury, A. Gomez, R. Cordova, R.E. Maroti, and E.A. Dalchiele, Thin Solid Films 490, 182 (2005).CrossRefGoogle Scholar
  16. 16.
    J.D. Desai, S.K. Min, K.D. Jung, and O.S. Joo, Appl. Surf. Sci. 253, 1781 (2006).CrossRefGoogle Scholar
  17. 17.
    Y. Xia, W. Wang, Y. Qian, L. Yang, Z. Chen, and J. Cry, Growth 167, 656 (1996).CrossRefGoogle Scholar
  18. 18.
    M. Krunks, J. Soon, T. Unt, A. Mere, and V. Mikli, Vaccum 107, 242 (2014).CrossRefGoogle Scholar
  19. 19.
    M. Jlassi, I. Sta, M. Hajji, and H. Ezzaouia, Appl. Surf. Sci. 308, 199 (2014).CrossRefGoogle Scholar
  20. 20.
    J.L. Yang, Y.S. Lai, and J.S. Chen, Thin Solid Films 488, 242 (2005).CrossRefGoogle Scholar
  21. 21.
    J. Velevska and M. Ristova, Sol. Energy Mater. Sol. Cells 73, 131 (2002).CrossRefGoogle Scholar
  22. 22.
    A.J. Varkey and A.F. Fort, Thin Solid Films 235, 47 (1993).CrossRefGoogle Scholar
  23. 23.
    B. Pejova, T. Kocareva, M. Najdoski, and I. Grozdanov, Appl. Surf. Sci. 165, 271 (2000).CrossRefGoogle Scholar
  24. 24.
    I. Fasakia, A. Koutoulaki, M. Kompitsas, and C. Charitidis, Appl. Surf. Sci. 257, 429 (2010).CrossRefGoogle Scholar
  25. 25.
    D. Minkov, J. Phys. D Appl. Phys. 22, 1157 (1989).CrossRefGoogle Scholar
  26. 26.
    R. Deokate, C. Bhosale, and K. Rajpure, J. Alloys Compd. 473, L20 (2009).CrossRefGoogle Scholar
  27. 27.
    S. Benramache, B. Benhaoua, and F. Chabane, J. Semicond. 33, 093001 (2012).CrossRefGoogle Scholar
  28. 28.
    R. Swapna and M.C. Santhosh Kumar, Ceram. Int. 38, 3875 (2012).CrossRefGoogle Scholar
  29. 29.
    S.A. Khalate, R.S. Kate, J.H. Kim, S.M. Pawar, and R.J. Deokate, Superlattices Microstruct. 103, 335 (2017).CrossRefGoogle Scholar
  30. 30.
    L.A. García-Cerda, K.M. Bernal-Ramos, S.M. Montemayor, M.A. Quevedo-López, R. Betancourt-Galindo, and D. Bueno-Báques, J. Nanomater. (2011).  https://doi.org/10.1155/2011/162495
  31. 31.
    B.D. Cullity and S.R. Stoke, Elements of X-Ray Diffraction, 3rd ed. (Upper Saddle River: Prentice Hall, 2001).Google Scholar
  32. 32.
    E. Yücel and Y. Yücel, Ceram. Int. 43, 407 (2017).CrossRefGoogle Scholar
  33. 33.
    J.G.M. VanBerkum, A.C. Varmuch, R. Delhen, T.H. Dinkeijser, and E.J. Hemieiger, J. Appl. Cryst. 27, 345 (1994).CrossRefGoogle Scholar
  34. 34.
    B.G. Jeyaprakash, K. Kesavani, R. Ashok Kumar, S. Mohan, and A. Amalarani, Bull. Mater. Sci. 34, 601 (2011).CrossRefGoogle Scholar
  35. 35.
    R. Touati, M.B. Rabeh, and M. Kanzari, Energy Procedia 44, 44 (2014).CrossRefGoogle Scholar
  36. 36.
    S.A. Khalate, R.S. Kate, H.M. Pathan, and R.J. Deokate, J. Solid State Electrochem. 21, 2737 (2017).CrossRefGoogle Scholar
  37. 37.
    C. Bareet and T.B. Massalski, Structure of Metals (Oxford: Pergaron Press, 1980), p. 1923.Google Scholar
  38. 38.
    H.L. Chen and Y.S. Yang, Thin Solid Films 516, 5590 (2008).CrossRefGoogle Scholar
  39. 39.
    E. Rosencher and B. Vinter, Optoelectronics (Cambridge: Cambridge University Press, 2002).CrossRefGoogle Scholar
  40. 40.
    R. Sharma, A.D. Acharya, S.B. Shrivastava, T. Shripathi, and V. Ganesan, Optik 125, 6751 (2014).CrossRefGoogle Scholar
  41. 41.
    B.A. Reguig, A. Khelil, L. Cattin, M. Morsli, and J.C. Bernède, Appl. Surf. Sci. 253, 4330 (2007).CrossRefGoogle Scholar
  42. 42.
    S.F. Oboudi, N.F. Habubi, G.H. Mohmmaed, and S.S. Chaid, Int. Lett. Chem. Phys. Astron. 13, 78 (2013).CrossRefGoogle Scholar
  43. 43.
    R. Sharma, A.D. Acharya, S. Moghe, S.B. Shrivastva, M. Gangarde, V. Shripathi, and V. Ganesan, Mater. Sci. Semicond. Process. 23, 42 (2014).CrossRefGoogle Scholar
  44. 44.
    K.R. Nemade and S.A. Waghuley, Int. J. Metals (2014).  https://doi.org/10.1155/2014/389416.Google Scholar
  45. 45.
    N. Sharma and R. Kumar, Adv. Appl. Sci. Res. 5, 111 (2014).Google Scholar
  46. 46.
    H. Aydin, S.A. Mansour, C. Aydin, A.A. Al-Ghamdi, O.A. Al-Hartomy, F. El-Tantawy, and F. Yakuphanoglu, J. Sol Gel Sci. Technol. 64, 728 (2012).CrossRefGoogle Scholar
  47. 47.
    A. Goswami, Thin Film Fundamentals (New Delhi: New Age International (P) Ltd., 2006), p. 376.Google Scholar
  48. 48.
    R. Thiyagarajan, M. Mahaboob Beevi, and M. Anusuya, J. Am. Sci. 5, 6 (2009).Google Scholar
  49. 49.
    C. Mrabet, A. Boukhachem, M. Amlouk, and T. Manoubi, J. Alloys Compd. 666, 392 (2016).CrossRefGoogle Scholar
  50. 50.
    V.R. Shinde, C.D. Lokhnde, R.S. Mane, and S.H. Han, Appl. Surf. Sci. 245, 407 (2005).CrossRefGoogle Scholar
  51. 51.
    K. Sajilal and A. Moses Ezhil Raj, Optik 127, 1442 (2016).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Vidya Pratishthan’s, Arts, Science and Commerce CollegeBaramatiIndia

Personalised recommendations