Advertisement

Journal of Electronic Materials

, Volume 48, Issue 5, pp 2992–2999 | Cite as

The Resistive Switching Characteristics of TiN/HfO2/Ag RRAM Devices with Bidirectional Current Compliance

  • C. Sun
  • S. M. Lu
  • F. Jin
  • W. Q. Mo
  • J. L. Song
  • K. F. DongEmail author
Article
  • 51 Downloads

Abstract

The performance of TiN/HfO2/Ag resistive random-access memory (RRAM) devices combining the oxygen-based RRAM (OxRRAM) and conducting bridge random-access memory (CBRAM) was studied. Current compliance (CC) values could significantly affect the resistive switching process: with unidirectional CC, permanent breakdown for the devices was observed. With bidirectional smaller CC, the stable bipolar resistive switching mode was obtained, and the cation injection played a leading role in the resistive switching process, while the devices with higher CC always remained in low-resistance state (LRS). The resistance–voltage (RV) curve and conducting mechanism were analyzed for the bidirectional smaller CC devices, indicating ohmic conduction for the LRS, while the space charge limited the current for the high-resistance state. The results of x-ray photoelectron spectroscopy showed that oxygen vacancies participated in the resistive switching process. It could be concluded that conducting paths were formed from conducting filaments of oxygen vacancies and conducting bridges of Ag grains, and the different formation rate of conducting filaments related to the values of CC was the prime reason for the various changes. Moreover, the characteristics of TiN/HfO2/Ta devices proved the universality of bidirectional CC. The method of making the OxRRAM and CBRAM coexist in the RRAM devices may offer a way to fabricate devices with low power consumption.

Keywords

RRAM bidirectional current compliance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work is partially supported by the National Natural Science Foundation of China (Grant Nos. 51501168, 41574175 and 41204083), and the Fundamental Research Funds for the Central Universities, China University of Geosciences (Wuhan; nos. CUG150632 and CUGL160414).

References

  1. 1.
    S. Song, B. Cho, T.W. Kim, Y. Ji, M. Jo, G. Wang, M. Choe, Y.H. Kahng, H. Hwang, and T. Lee, Adv. Mater. 22, 5048 (2010).CrossRefGoogle Scholar
  2. 2.
    J.J. Zhang, H.J. Sun, Y. Li, Q. Wang, X.H. Xu, and X.S. Miao, Appl. Phys. Lett. 102, 183513 (2013).CrossRefGoogle Scholar
  3. 3.
    D.K. Kim, D.S. Suh, and J. Park, IEEE Electron Devices Lett. 31, 600 (2010).CrossRefGoogle Scholar
  4. 4.
    W. Shen, R. Dittmann, U. Breuer, and R. Waser, Appl. Phys. Lett. 93, 222102 (2008).CrossRefGoogle Scholar
  5. 5.
    S. Gao, C. Chen, Z. Zhai, and H.Y. Liu, Appl. Phys. Lett. 105, 063504 (2014).CrossRefGoogle Scholar
  6. 6.
    J.W. Seo, S.J. Baik, S.J. Kang, Y.H. Hong, J.H. Yang, and K.S. Lim, Appl. Phys. Lett. 98, 233505 (2011).CrossRefGoogle Scholar
  7. 7.
    N. Sedghi, H. Li, I. Brunell, K. Dawson, R. Potter, Y. Guo, J. Gibbon, V. Dhanak, W. Zhang, J. Zhang, J. Robertson, S. Hall, and P. Chalker, Appl. Phys. Lett. 111, 092904 (2017).CrossRefGoogle Scholar
  8. 8.
    S. Seo, M.J. Lee, D.H. Seo, E.J. Jeoung, D.S. Suh, Y.S. Joung, I.K. Yoo, I.R. Hwang, S.H. Kim, I.S. Byun, J.S. Kim, J.S. Choi, and B.H. Park, Appl. Phys. Lett. 85, 5655 (2004).CrossRefGoogle Scholar
  9. 9.
    L. Zou, W. Hu, W. Xie, and D.H. Bao, J. Alloys Compd. 693, 1180 (2017).CrossRefGoogle Scholar
  10. 10.
    W.R. Hiatt and T.W. Hickmott, Appl. Phys. Lett. 6, 106 (1965).CrossRefGoogle Scholar
  11. 11.
    W.H. Guan, S.B. Long, R. Jia, and M. Liu, Appl. Phys. Lett. 91, 062111 (2007).CrossRefGoogle Scholar
  12. 12.
    H.Y. Lee, P.S. Chen, T.Y. Wu, C.C. Wang, P.J. Tzeng, C.H. Lin, F. Chen, M.J. Tsai, and C. Lien, Appl. Phys. Lett. 92, 142911 (2008).CrossRefGoogle Scholar
  13. 13.
    M. Fujimoto, H. Koyama, M. Konagai, Y. Hosoi, K. Ishihara, S. Ohnishi, and N. Awaya, Appl. Phys. Lett. 89, 223509 (2006).CrossRefGoogle Scholar
  14. 14.
    Y.Y. Chen, G. Pourtois, C. Adelmann, L. Goux, B. Govoreanu, R. Degreave, and M. Jurczak, Appl. Phys. Lett. 100, 113513 (2012).CrossRefGoogle Scholar
  15. 15.
    M. Saadi, P. Gonon, C. Vallee, C. Mannequin, H. Grampeix, E. Jalaguier, F. Jomni, and A. Bsiesy, J. Appl. Phys. 119, 114501 (2016).CrossRefGoogle Scholar
  16. 16.
    X.M. Chen, W. Hu, S.X. Wu, and D.H. Bao, Appl. Phys. Lett. 104, 043508 (2014).CrossRefGoogle Scholar
  17. 17.
    M. Sowinska, T. Bertaud, D. Walczyk, S. Thiess, P. Galka, L. Alff, C. Walczyk, and T. Schroeder, J. Appl. Phys. 115, 204509 (2014).CrossRefGoogle Scholar
  18. 18.
    C. Sun, S.M. Lu, F. Jin, W.Q. Mo, J.L. Song, and K.F. Dong, J. Alloys Compd. 749, 481 (2018).CrossRefGoogle Scholar
  19. 19.
    Y.L. Chung, W.H. Cheng, J.S. Jeng, W.C. Chen, S.A. Jhan, and J.S. Chen, J. Appl. Phys. 116, 164502 (2014).CrossRefGoogle Scholar
  20. 20.
    N. Xu, B. Gao, L.F. Liu, B. Sun, X.Y. Liu, R.Q. Han, J.F. Kang, B. Yu, in Symposium on VLSI Technology (2008), pp. 100–101.Google Scholar
  21. 21.
    W.Y. Chang, Y.C. Lai, T.B. Wu, S.F. Wang, F. Chen, and M.J. Tsai, Appl. Phys. Lett. 92, 022110 (2008).CrossRefGoogle Scholar
  22. 22.
    K.C. Chang, T.M. Tsai, T.C. Chang, Y.E. Syu, C.C. Wang, and S.L. Chuang, Appl. Phys. Lett. 99, 263501 (2011).CrossRefGoogle Scholar
  23. 23.
    C.C. Hsieh, T. Roy, A. Rai, Y.F. Chang, and S.K. Banerjee, Appl. Phys. Lett. 106, 173108 (2015).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • C. Sun
    • 1
    • 2
  • S. M. Lu
    • 1
    • 2
  • F. Jin
    • 1
    • 2
  • W. Q. Mo
    • 1
    • 2
  • J. L. Song
    • 1
    • 2
  • K. F. Dong
    • 1
    • 2
    Email author
  1. 1.School of AutomationChina University of GeosciencesWuhanChina
  2. 2.Hubei Key Laboratory of Advanced Control and Intelligent Automation for Complex SystemsWuhanChina

Personalised recommendations