Advertisement

Journal of Electronic Materials

, Volume 48, Issue 5, pp 3131–3136 | Cite as

Photocatalytic Activity of BiTaO4 Nanoparticles for the Degradation of Methyl Orange Under Visible Light

  • Quang Bac Nguyen
  • Dinh Phuong Vu
  • Thi Ha Chi Nguyen
  • Trung Dung Doan
  • Ngoc Chuc Pham
  • Thi Lim Duong
  • Dai Lam Tran
  • Giang Long Bach
  • Hong Con Tran
  • Ngoc Nhiem DaoEmail author
Article
  • 18 Downloads

Abstract

BiTaO4 nanoparticles were successfully synthesized by the gel-combustion method using polyvinyl alcohol and freshly prepared precursor Ta2O5.nH2O. Materials were characterized by x-ray diffraction and transmission electron microscopy (TEM). With an average grain size of 30 nm, the prepared particle was used to investigate the photocatalytic capacity under the visible light irradiation. The photodegradation process of methyl orange occurred following the pseudo-first order reaction mechanism on the surface of the materials. BiTaO4 nanoparticles which calcined at 750°C presented the best catalytic capacity with the highest rate constant to degrade methyl orange about 5.43 × 10−2 mg l−1 min−1. Besides, the intermediates coming from the photocatalytic degradation of methyl orange were evaluated by liquid chromatography coupled with electrospray ionization ion-trap mass spectrometry (LC/MS). The results showed that the intermediates of degradation reactions of methyl orange were not more toxic than the initial methyl orange. BiTaO4 nanoparticles can mineralize the methyl orange after 60 min of illumination.

Keywords

Methyl orange photodegradation BiTaO4 LC/MS nanoparticles 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    C.G. da Silva and J.L. Faria, J. Photoch. Photobiol. 155, 133 (2003).CrossRefGoogle Scholar
  2. 2.
    B. Muktha, J. Darriet, G. Madras, and T.G. Row, J. Solid State Chem. 179, 3919 (2006).CrossRefGoogle Scholar
  3. 3.
    Z. Zou, J. Ye, K. Sayama, and H. Arakawa, Chem. Phys. Lett. 343, 303 (2001).CrossRefGoogle Scholar
  4. 4.
    Z. Zou, J. Ye, and H. Arakawa, Solid State Commun. 119, 471 (2001).CrossRefGoogle Scholar
  5. 5.
    R. Shi, J. Lin, Y. Wang, J. Xu, and Y. Zhu, J. Phys. Chem. C 114, 6472 (2010).CrossRefGoogle Scholar
  6. 6.
    C.G. Almeida, H.M. Andrade, A.J. Mascarenhas, and L.A. Silva, Mater. Lett. 64, 1088 (2010).CrossRefGoogle Scholar
  7. 7.
    H.F. Zhai, A.D. Li, J.Z. Kong, X.F. Li, J. Zhao, B.L. Guo, J. Yin, Z.S. Li, and D. Wu, J. Solid State Chem. 202, 6 (2013).CrossRefGoogle Scholar
  8. 8.
    I. Koyuncu, Desalination 143, 243 (2002).CrossRefGoogle Scholar
  9. 9.
    H.A. El-Daly, A.F. Habib, and M.A. El-Din, Dyes. Pigments 57, 197 (2003).CrossRefGoogle Scholar
  10. 10.
    W. Chu, Water Res. 35, 3147 (2001).CrossRefGoogle Scholar
  11. 11.
    B.H. Tan, T.T. Teng, and A.M. Omar, Water Res. 34, 597 (2000).CrossRefGoogle Scholar
  12. 12.
    D. Ansorgová, M. Holčapek, and P. Jandera, J. Sep. Sci. 26, 1017 (2003).CrossRefGoogle Scholar
  13. 13.
    F. Gosetti, V. Gianotti, S. Angioi, S. Polati, E. Marengo, and M.C. Gennaro, J. Chromatogr. A 1054, 379 (2004).Google Scholar
  14. 14.
    N.D. Van and D.N. Nhiem, Chem. Lett. 43, 1438 (2014).CrossRefGoogle Scholar
  15. 15.
    I. Abrahams, F. Krok, M. Struzik, and J.R. Dygas, Solid State Ionics 179, 1013 (2008).CrossRefGoogle Scholar
  16. 16.
    D. Zhou, X.Q. Fan, X.W. Jin, D.W. He, and G.H. Chen, Inorg. Chem. 55, 11979 (2016).CrossRefGoogle Scholar
  17. 17.
    N. Guettai and H.A. Amar, Desalination 185, 439 (2005).CrossRefGoogle Scholar
  18. 18.
    Y. Li, X. Li, J. Li, and J. Yin, Water Res. 40, 1119 (2006).CrossRefGoogle Scholar
  19. 19.
    J. Matos, J. Laine, and J.M. Herrmann, J. Catal. 200, 10 (2001).CrossRefGoogle Scholar
  20. 20.
    A. Fujishima, T.N. Rao, and D.A. Tryk, J. Photoch. Photobio. C. 2000, 1 (2000).CrossRefGoogle Scholar
  21. 21.
    M.H. Habibi, A. Hassanzadeh, and S. Mahdavi, J. Photoch. Photobio. 172, 89 (2005).CrossRefGoogle Scholar
  22. 22.
    T. Chen, Y. Zheng, J.M. Lin, and G. Chen, J. Am. Soc. Mass Spec. 19, 997 (2008).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Quang Bac Nguyen
    • 1
  • Dinh Phuong Vu
    • 2
  • Thi Ha Chi Nguyen
    • 1
    • 3
  • Trung Dung Doan
    • 1
  • Ngoc Chuc Pham
    • 1
  • Thi Lim Duong
    • 4
  • Dai Lam Tran
    • 3
    • 5
  • Giang Long Bach
    • 6
  • Hong Con Tran
    • 2
  • Ngoc Nhiem Dao
    • 1
    • 3
    Email author
  1. 1.Institute of Materials ScienceVietnam Academy of Science and TechnologyHanoiVietnam
  2. 2.Faculty of ChemistryVNU Hanoi University of ScienceHanoiVietnam
  3. 3.Graduate University of Science and TechnologyVietnam Academy of Science and TechnologyHanoiVietnam
  4. 4.Institute of GeographyVietnam Academy of Science and TechnologyHanoiVietnam
  5. 5.Institute for Tropical TechnologyVietnam Academy of Science and TechnologyHanoiVietnam
  6. 6.Institute of High TechnologyNguyen Tat Thanh UniversityHo Chi MinhVietnam

Personalised recommendations