Advertisement

Journal of Electronic Materials

, Volume 48, Issue 5, pp 3086–3095 | Cite as

Preparation and Characterization of MWCNT/Zn0.25Co0.75Fe2O4 Nanocomposite and Investigation of Its Microwave Absorption Properties at X-Band Frequency Using Silicone Rubber Polymeric Matrix

  • Reza Peymanfar
  • Shahrzad JavanshirEmail author
  • Mohammad Reza Naimi-Jamal
  • Ahmad Cheldavi
  • Maryam Esmkhani
Article
  • 11 Downloads

Abstract

Microwave absorption has attracted considerable attention in the last decade. Absorbing materials are an essential component for the reduction of incident microwave by absorption or by the use of destructive interference. Various factors such as permittivity and permeability affect the attenuation of microwaves by absorbers. From this observation, in this research an absorbing material has been developed to improve these properties using multiwall carbon nanotubes (MWCNTs) as a conductive polymer and Zn0.25Co0.75Fe2O4 as magnetic nanoparticles. For better dispersion in the reaction medium, consequently enhancing the interfacial polarization, MWCNTs were functionalized with carboxylic acid groups. The functionalized MWCNTs were then decorated with Zn0.25Co0.75Fe2O4 magnetic nanoparticles through sonochemical and solvothermal complementary methods in ethylene glycol as solvent. Zn0.25Co0.75Fe2O4 nanoparticles and MWCNT/Zn0.25Co0.75Fe2O4 nanocomposite were identified by diffuse reflection spectroscopy (DRS), Fourier transform infrared (FT-IR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), x-ray diffraction (XRD) and vibrating sample magnetometer (VSM). Investigation of microwave absorption properties was performed by vector network analyzer (VNA). Finally, MWCNT/Zn0.25Co0.75Fe2O4 nanocomposite was blended in silicone rubber as a polymeric matrix to investigate its microwave absorption properties. The MWCNT/Zn0.25Co0.75Fe2O4/silicone rubber nanocomposite absorbed 79.08 dB at 10.5 GHz with a thickness of 2.4 mm, having effective bandwidth (RL < −20 dB) more than 2.7 GHz.

Keywords

Polymeric matrix silicone rubber multiwall carbon nanotube microwave absorption magnetic nanoparticle 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

References

  1. 1.
    S.S.S. Afghahi, R. Peymanfar, S. Javanshir, Y. Atassi, and M. Jafarian, J. Magn. Magn. Mater. 423, 152 (2017).CrossRefGoogle Scholar
  2. 2.
    R. Peymanfar, A. Javidan, and S. Javanshir, J. Appl. Polym. Sci. 134, 30 (2017).CrossRefGoogle Scholar
  3. 3.
    X. Jian, B. Wu, Y. Wei, S.X. Dou, X. Wang, W. He, and N. Mahmood, ACS Appl. Mater. Interfaces. 8, 6101 (2016).CrossRefGoogle Scholar
  4. 4.
    C. Tian, Y. Du, P. Xu, R. Qiang, Y. Wang, D. Ding, J. Xue, J. Ma, H. Zhao, and X. Han, ACS Appl. Mater. Interfaces. 7, 20090 (2015).CrossRefGoogle Scholar
  5. 5.
    M. Qiao, X. Lei, Y. Ma, L. Tian, K. Su, and Q. Zhang, Ind. Eng. Chem. Res. 55, 6263 (2016).CrossRefGoogle Scholar
  6. 6.
    Y. Li, M. Yu, P. Yang, and J. Fu, Ind. Eng. Chem. Res. 56, 8872 (2017).CrossRefGoogle Scholar
  7. 7.
    J. Rezania and H. Rahimi, J. Compos. Mater. 51, 2263 (2017).CrossRefGoogle Scholar
  8. 8.
    B. Wen, M. Cao, M. Lu, W. Cao, H. Shi, J. Liu, X. Wang, H. Jin, X. Fang, W. Wang, and J. Yuan, Adv. Mat. 26, 3484 (2014).CrossRefGoogle Scholar
  9. 9.
    M. Lu, X. Wang, W. Cao, J. Yuan, and M. Cao, Nanotechnology 27, 065702 (2015).CrossRefGoogle Scholar
  10. 10.
    M.-S. Cao, W.-L. Song, Z.-L. Hou, B. Wen, and J. Yuan, Carbon 48, 788 (2010).CrossRefGoogle Scholar
  11. 11.
    K.-Y. Park, S.-E. Lee, C.-G. Kim, and J.-H. Han, Compos. Struct. 81, 401 (2007).CrossRefGoogle Scholar
  12. 12.
    S. Rul, F. Lefèvre-Schlick, E. Capria, C. Laurent, and A. Peigney, Acta Mater. 52, 1061 (2004).CrossRefGoogle Scholar
  13. 13.
    R. Peymanfar and S. Javanshir, J. Magn. Magn. Mater. 432, 444 (2017).CrossRefGoogle Scholar
  14. 14.
    Y.-W. Nam, J.-H. Choi, J.-M. Huh, W.-J. Lee, and C.-G. Kim, J. Compos. Mater. 52, 1413 (2017).CrossRefGoogle Scholar
  15. 15.
    X.J. Zhang, G.S. Wang, W.Q. Cao, Y.Z. Wei, J.F. Liang, L. Guo, and M.S. Cao, ACS Appl. Mater. Interfaces. 16, 7471 (2014).CrossRefGoogle Scholar
  16. 16.
    Y.-F. Pan, G.-S. Wang, L. Liu, L. Guo, and S.-H. Yu, Nano Res. 10, 284 (2017).CrossRefGoogle Scholar
  17. 17.
    J. Zhao, J. Yu, Y. Xie, Z. Le, X. Hong, S. Ci, J. Chen, X. Qing, W. Xie, and Z. Wen, Sci. Rep. 6, 20496 (2016).CrossRefGoogle Scholar
  18. 18.
    M.M. Lu, W.Q. Cao, H.L. Shi, X.Y. Fang, J. Yang, Z.L. Hou, H.B. Jin, W.Z. Wang, J. Yuan, and M.S. Cao, J. Mater. Chem. 2, 10540 (2014).CrossRefGoogle Scholar
  19. 19.
    H. Nikmanesh, M. Moradi, G.H. Bordbar, and R.S. Alam, Ceram. Int. 42, 14342 (2016).CrossRefGoogle Scholar
  20. 20.
    H.Y. Atay and E. Çelik, J. Compos. Mater. 49, 2469 (2015).CrossRefGoogle Scholar
  21. 21.
    H. Soleimani, Z. Abbas, N. Yahya, H. Soleimani, and M.Y. Ghotbi, J. Compos. Mater. 46, 1497 (2012).CrossRefGoogle Scholar
  22. 22.
    D. Moitra, S. Dhole, B.K. Ghosh, M. Chandel, R.K. Jani, M.K. Patra, S.R. Vadera, and N.N. Ghosh, J. Phys. Chem. 121, 21290 (2017).CrossRefGoogle Scholar
  23. 23.
    A.F. Abdulaziz, K.I. Khaleel, N.A. Bakr, and J. Tikrit, Pure Sci. 16, 216 (2011).Google Scholar
  24. 24.
    R.S. Yadav, J. Havlica, M. Hnatko, P. Šajgalík, C. Alexander, M. Palou, E. Bartoníčková, M. Boháč, F. Frajkorová, J. Masilko, and M. Zmrzlý, J. Magn. Magn. Mater. 378, 190 (2015).CrossRefGoogle Scholar
  25. 25.
    G. Sathishkumar, C. Venkataraju, and K. Sivakumar, J. Mater. Sci.: Mater. Electron. 22, 1715 (2011).Google Scholar
  26. 26.
    A. Tawfik, I. Hamada, and O. Hemeda, J. Magn. Magn. Mater. 250, 77 (2002).CrossRefGoogle Scholar
  27. 27.
    M. El-Saadawy, J. Adv. Ceram. 1, 144 (2012).CrossRefGoogle Scholar
  28. 28.
    M. Akram and M. Anis-ur-Rehman, J. Electron. Mater. 43, 485 (2014).CrossRefGoogle Scholar
  29. 29.
    M.T. Jamil, J. Ahmad, S.H. Bukhari, T. Sultan, M.Y. Akhter, H. Ahmad, and G. Murtaza, J. Ovonic Res. 13, 45 (2017).Google Scholar
  30. 30.
    X. Wang, J. Fan, F. Qian, and Y. Min, RSC Adv. 6, 49966 (2016).CrossRefGoogle Scholar
  31. 31.
    X.J. Zhang, S. Li, S.W. Wang, Z.J. Yin, J.Q. Zhu, A.P. Guo, G.S. Wang, P.G. Yin, and L. Guo, J. Phys. Chem. 120, 22019 (2016).Google Scholar
  32. 32.
    R. Peymanfar and M. Rahmanisaghieh, Mater. Res. Express 5, 105012 (2018).CrossRefGoogle Scholar
  33. 33.
    G. Li, Y. Guo, X. Sun, T. Wang, J. Zhou, and J. He, Phys. Chem. Solids 73, 1268 (2012).CrossRefGoogle Scholar
  34. 34.
    B. Quan, X. Liang, G. Ji, J. Lv, S. Dai, G. Xu, and Y. Du, Carbon 129, 310 (2018).CrossRefGoogle Scholar
  35. 35.
    Y. Li, Y. Zhao, X. Lu, Y. Zhu, and L. Jiang, Nano Res. 9, 2034 (2016).CrossRefGoogle Scholar
  36. 36.
    B. Wen, M.S. Cao, Z.L. Hou, W.L. Song, L. Zhang, M.M. Lu, H.B. Jin, X.Y. Fang, W.Z. Wang, and J. Yuan, Carbon 65, 124 (2013).CrossRefGoogle Scholar
  37. 37.
    F. Movassagh-Alanagh, A. Bordbar-Khiabani, and A. Ahangari-Asl, Compos. Sci. Technol. 150, 65 (2017).CrossRefGoogle Scholar
  38. 38.
    S. Dai, Y. Cheng, B. Quan, X. Liang, W. Liu, Z. Yang, G. Ji, and Y. Du, Nanoscale 10, 6945 (2018).CrossRefGoogle Scholar
  39. 39.
    W.-L. Song, M.-S. Cao, Z.-L. Hou, X.-Y. Fang, X.-L. Shi, and J. Yuan, Appl. Phys. Lett. 94, 233110 (2009).CrossRefGoogle Scholar
  40. 40.
    M.S. Cao, J. Yang, W.L. Song, D.Q. Zhang, B. Wen, H.B. Jin, Z.L. Hou, and J. Yuan, ACS Appl. Mater. Interfaces. 4, 6949 (2012).CrossRefGoogle Scholar
  41. 41.
    W. She, H. Bi, Z. Wen, Q. Liu, X. Zhao, J. Zhang, and R. Che, ACS Appl. Mater. Interfaces. 8, 9782 (2016).CrossRefGoogle Scholar
  42. 42.
    R. Shu, W. Li, X. Zhou, D. Tian, G. Zhang, Y. Gan, J. Shi, and J. He, J. Alloys Compd. 743, 163 (2018).CrossRefGoogle Scholar
  43. 43.
    M. Almasi-Kashi, M.H. Mokarian, and S. Alikhanzadeh-Arani, J. Alloys Compd. 742, 413 (2018).CrossRefGoogle Scholar
  44. 44.
    X. Lyu, Z. Yang, M. Li, L. Yang, J. Liu, and R. Wu, J. Phys. Chem. Solids 126, 143 (2018).Google Scholar
  45. 45.
    W.B. Weir, Proc. IEEE 62, 33 (1974).CrossRefGoogle Scholar
  46. 46.
    M. Cao, X. Wang, W. Cao, X. Fang, B. Wen, and J. Yuan, Small 14, 1800987 (2018).CrossRefGoogle Scholar
  47. 47.
    W.-Q. Cao, X.-X. Wang, J. Yuan, W.-Z. Wang, and M.-S. Cao, J. Mater. Chem. 3, 10017 (2015).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Department of ChemistryIran University of Science and TechnologyTehranIran
  2. 2.Department of Electrical EngineeringIran University of Science and TechnologyTehranIran

Personalised recommendations