Advertisement

Journal of Electronic Materials

, Volume 48, Issue 5, pp 3261–3269 | Cite as

Synthesis and Characterization of Novel Chitosan/Yttrium Oxide Nanorods and Their Electrochemical Sensing Performance Towards Cd (II) Ions

  • G. Padmalaya
  • B. S. SreejaEmail author
  • S. Radha
  • E. Manikandan
  • G. Rajakumar
Article
  • 12 Downloads

Abstract

A simple hydrothermal method was used to prepareyttrium oxide (YO) nanorods and Ch-YO nanocomposite based nanorods. The obtained nanorods were investigated using various analytical techniques such as x-ray diffraction (XRD), Fourier infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). An XRD investigation confirms the well confined crystallinity without agglomeration after the coating with chitosan. The presence of functional groups was analysed using FTIR and self aligned nanorods was found using SEM. The developed nanorods were subjected for the detection of Cd (II) ions using cyclic voltammetry and square wave voltammetry revealing nanorods with enhanced sensing and electrocatalytic behavior towards Cd (II) ions. The presence of amine and carboxyl groups on nanorods helped in reducing the agglomeration and crystallite size, these size dependent properties supported the nanorods to achieve LOD (0.00118 μM) and sensitivity of 27.84 μA μM−1which in turn applied for real-time analysis.

Keywords

Yttrium oxide chitosan cyclic voltammetry limit of detection sensitivity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

Authors provide sincere thanks to SSN trust for delivering financial support to carry out this work. Authors express their extended sole gratitude to SSN trust for awarding a fellowship.

References

  1. 1.
    V. Murugan and S.M. Chen, Nat. Sci. Rep. 7, 653 (2017).CrossRefGoogle Scholar
  2. 2.
    X. Dai, S. Wu, and S. Li, J. Chin. Chem. Soc. (2018).  https://doi.org/10.1080/22243682.2018.1425904.
  3. 3.
    J. Godt, F. Scheidig, C. Grosse-Siestrup, V. Esche, P. Brandenburg, A. Reich, and D. Groneberg, J Occup. Med. Toxicol. 1, 22 (2006).CrossRefGoogle Scholar
  4. 4.
    M. Ikeda, T. Watanabe, F. Ohashi, and S. Shimbo, Biol. TraceElem. Res. 133, 255 (2010).CrossRefGoogle Scholar
  5. 5.
    M. González-Estecha, E. Trasobares, M. Fuentes, M.J. Martínez, S. Cano, N. Vergara, M.J. Gaspar, J. González-Revaldería, M.C. Barciela, Z. Bugarín, and M.D. Fernández, J. Trace Elem. Med Biol. 25, 22 (2011).CrossRefGoogle Scholar
  6. 6.
    I.C. Chang, T.Y. Hsiao, Y.H. Yu, and H.W. Ma, Environ. Sci. Pollut. Res. 14, 49 (2005).CrossRefGoogle Scholar
  7. 7.
    A. Prange, Sci. Total Environ. 470, 1159 (2014).Google Scholar
  8. 8.
    A. Ruttens, K. Smeets, H. Clijsters, and J. Vangronsveld, Biometals 23, 769 (2010).CrossRefGoogle Scholar
  9. 9.
    R.Q. Thompson and S.J. Christopher, Anal. Methods 5, 1346 (2013).CrossRefGoogle Scholar
  10. 10.
    K.E. Murphy and T.W. Vetter, Anal. Bioanal. Chem. 405, 4579 (2013).CrossRefGoogle Scholar
  11. 11.
    A. Matsumoto, S. Osaki, T. Kobata, B. Hashimoto, H. Uchihara, and T. Nakahara, Microchem. J. 95, 85 (2010).CrossRefGoogle Scholar
  12. 12.
    H. Parham, N. Pourreza, and N. Rahbar, J. Hazard. Mater. 163, 588 (2009).CrossRefGoogle Scholar
  13. 13.
    Z. Wan, Z. Xu, and J. Wang, Analyst 131, 141 (2006).CrossRefGoogle Scholar
  14. 14.
    X. Dai, O. Nekrassova, M.E. Hyde, and R.G. Compton, Anal. Chem. 76, 5924 (2004).CrossRefGoogle Scholar
  15. 15.
    Y. Wei, R. Yang, X.Y. Yu, L. Wang, J.H. Liu, and X.J. Huang, Analyst 137, 2183 (2012).CrossRefGoogle Scholar
  16. 16.
    Z.G. Liu, X. Chen, J.H. Liu, and X.J. Huang, Electrochem. Commun. 30, 59 (2013).CrossRefGoogle Scholar
  17. 17.
    Z. Wu, L. Jiang, Y. Zhu, C. Xu, Y. Ye, and X. Wang, J. Solid State Electrochem. 16, 3171 (2012).CrossRefGoogle Scholar
  18. 18.
    T. Saravanan, P. Anandan, M. Azhagurajan, M. Arivanandhan, K. Pazhanivel, Y. Hayakawa, and R. Jayavel, Mater. Res. Express 3, 075502 (2016).CrossRefGoogle Scholar
  19. 19.
    A.M. Lejeus and R. Collongues, Current Topics in Material Science E Kaldis (Amsterdam: North- Holland, 1980).Google Scholar
  20. 20.
    H.S. Yoo, H.S. Jang, W.B. Im, J. Kang, and D.Y. Hand Jeon, J. Mater. Res. 22, 2017 (2007).CrossRefGoogle Scholar
  21. 21.
    T.S. Atabaev, Y.H. Hwang, and H.K. Kim, Nanoscale Res. Lett. 7, 556 (2012).CrossRefGoogle Scholar
  22. 22.
    H.V. Fajardo, E. Longo, E.R. Leite, R. Libanori, L.F.D. Probst, and N.L.V. Carreno, Mater. Res. 15, 285 (2012).CrossRefGoogle Scholar
  23. 23.
    I. Leceta, P. Guerrero, and K. de la Caba, Carbohydr. Polym. 93, 339 (2013).CrossRefGoogle Scholar
  24. 24.
    S. Islam, M.A.R. Bhuiyan, and M.N. Islam, J. Polym. Environ. 25, 854 (2017).CrossRefGoogle Scholar
  25. 25.
    N. Ahmed, S. Tarannum, and Z.N. Siddiqui, RSC Adv. 5, 50691 (2015).CrossRefGoogle Scholar
  26. 26.
    G. Padmalaya, B.S. Sreeja, P. Senthil Kumar, and M. Arivanandhan, Desalt. Water. Treat. 97, 295 (2017).CrossRefGoogle Scholar
  27. 27.
    G. Padmalaya, B.S. Sreeja, P. Dinesh Kumar, S. Radha, V. Poornima, M. Arivanandan, S. Shrestha, and T.S. Uma, J. Inorg. Organomet. Polym. Mater. (2018).  https://doi.org/10.1007/s10904-018-0989-2.
  28. 28.
    Y. Zhang, S. Yuan, Y. Zhao, H. Wang, and C. He, J. Mater. Chem. A 2, 7897 (2014).CrossRefGoogle Scholar
  29. 29.
    H.Z. Zhang, L.Y. Liang, A.H. Chen, Z.M. Liu, Z. Yu, H.T. Cao, and Q. Wan, Appl. Phys. Lett. 97, 122108 (2010).CrossRefGoogle Scholar
  30. 30.
    A. Ali Ismail, Appl. Cat. B: Environ. 58, 115 (2005).CrossRefGoogle Scholar
  31. 31.
    H. Huang, G.Q. Xu, W.S. Chin, L.M. Gan, and C.H. Chew, Nanotechnology 13, 318 (2002).CrossRefGoogle Scholar
  32. 32.
    A.C. Brand-ao-Silva, M.A. Gomes, S.M.V. Novais, Z.S. Macedo, J.F.M. Avila, J.J. Rodrigues Jr., and M.A.R.C. Alencar, J. Alloy. Compd. 731, 478 (2018).CrossRefGoogle Scholar
  33. 33.
    X. Li, D. Fan, C. Zhu, and X. Ma, J. Mater. Chem. B 2, 1234 (2014).CrossRefGoogle Scholar
  34. 34.
    I.S. Park, Y.C. Jung, S. Seong, J. Ahn, and J. Kang, J. Mater. Chem. C 2, 9240 (2014).CrossRefGoogle Scholar
  35. 35.
    A. Terbouche, S. Lameche, C. Ait-Ramdane-Terbouche, D. Guerniche, D. Lerari, K. Bachari, and D. Hauchard, Measurement 92, 524 (2016).CrossRefGoogle Scholar
  36. 36.
    N. AshwinKarthick, R. Thangappan, M. Arivanandhan, A. Gnanamani, and R. Jayavel, J. Inorg. Organomet. Polym. Mater.  https://doi.org/10.1007/s10904-017-0744-0.
  37. 37.
    M. Yanga, T.J. Jianga, Z. Guo, J.H. Liu, Y.F. Sunc, X. Chena, and X.J. Huanga, Sens. Actuators B 240, 887 (2017).CrossRefGoogle Scholar
  38. 38.
    M.K.L. Coelho, H.L. De Oliveira, F.G. De Almeida, K.B. Borges, C.R.T. Tarley, and A.C. Pereira, Int. J. Environ. Anal. Chem. (2018).  https://doi.org/10.1080/03067319.2018.1424330.
  39. 39.
    M. Velmurugan and S.M. Chen, Nat. Sci. Rep. 7, 653 (2017).CrossRefGoogle Scholar
  40. 40.
    Z. Guo, M.K. Seol, C. Gao, M.S. Kim, J.H. Ahn, Y.K. Choi, and X.J. Huang, Electrochim. Acta 211, 998 (2016).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Department of Electronics and Communication EngineeringSSN College of EngineeringKalavakkamIndia
  2. 2.Department of applied bioscience, College of life and Environmental ScienceKonkuk UniversitySeoulSouth Korea

Personalised recommendations