Advertisement

Journal of Electronic Materials

, Volume 48, Issue 5, pp 2986–2991 | Cite as

Demonstration of InAlSb MWIR Detector for High Operation Temperature Application

  • Mo LiEmail author
  • Yanqiu Lyu
  • Yingjie He
  • Xubo Zhu
  • Xiancun Cao
Article
  • 11 Downloads

Abstract

This paper reports the growth and characterization of InAlSb photodiodes grown on a InSb substrate for high operation temperature application. The studied InAlSb structures cover a cutoff wavelength range from 4.4 μm to 4.8 μm by tuning the Al composition in the absorber layers. A high Al composition barrier layer was inserted between the P-type contact layer and the absorber layer to reduce leakage current from the contact layer. To study the potential for high operation temperature device application, we here consider a 4.5 μm cutoff InAlSb pin photodetector as an example. The detector exhibited a differential resistance at zero bias R0A in excess of 3.8 × 104 Ωcm2 and a quantum efficiency of 57% at 110 K, providing a specific detectivity of more than 1.5 × 1011 cmHz1/2/W and a background limited operating temperature of 130 K with a 300 K background. The dominant mechanism of dark current and its relationship with operating temperature were analyzed in detail. InAlSb detectors are potentially low-cost, have high operating temperature, low dark current and a high quantum efficiency, which can meet the demands of high performance infrared detectors for small platforms.

Keywords

HOT infrared detector midwave infrared InAlSb MBE 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

References

  1. 1.
    A. Rogalski, Int. Soc. Opt. Photonics 10433, 104330L (2017).Google Scholar
  2. 2.
    P. Martyniuk, J. Antoszewski, M. Martyniuk, L. Faraone, and A. Rogalski, Appl. Phys. Rev. 1, 041102 (2014).CrossRefGoogle Scholar
  3. 3.
    Y. Reibel, R. Taalat, A. Brunner, L. Rubaldo, T. Augey, A. Kerlain, N. Péré-Laperne, A. Manissadjian, O. Gravrand, P. Castelein, and G. Destéfanis, Int. Soc. Opt. Photonics, 9451, 945110 (2015).Google Scholar
  4. 4.
    P. Klipstein, O. Klin, S. Grossman, N. Snapi, B. Yaakobovitz, M. Brumer, I. Lukomsky, D. Aronov, M. Yassen, B. Yofis, A. Glozman, T. Fishman, E. Berkowicz, and O. Magen, Int. Soc. Opt. Photonics 7608, 76081V (2010).Google Scholar
  5. 5.
  6. 6.
    D. Lee, M. Carmody, E. Piquette, P. Dreiske, A. Chen, A. Yulius, D. Edwall, S. Bhargava, M. Zandian, and W. Tennant, J. Electron. Mater. 45, 4587 (2016).CrossRefGoogle Scholar
  7. 7.
    G. Ariyawansa, C.J. Reyner, E.H. Steenbergen, J.M. Duran, J.D. Reding, J.E. Scheihing, H.R. Bourassa, B.L. Liang, and D.L. Huffaker, Appl. Phys. Lett. 108, 022106 (2016).CrossRefGoogle Scholar
  8. 8.
    G. Chen, A. Haddadi, A.-M. Hoang, R. Chevallier, and M. Razeghi, Opt. Lett. 40, 45 (2015).CrossRefGoogle Scholar
  9. 9.
    N. Baril, A. Brown, P. Maloney, M. Tidrow, D. Lubyshev, Y. Qui, J.M. Fastenau, A.W.K. Liu, and S. Bandara, Appl. Phys. Lett. 109, 122104 (2016).CrossRefGoogle Scholar
  10. 10.
    D.Z. Ting, A. Soibel, L. Höglund, C. Hill, S. Keo, A. Fisher, and S. Gunapala, J. Electron. Mater. 45, 4680 (2016).CrossRefGoogle Scholar
  11. 11.
    P. Klipstein, D. Aronov, M. ben Ezra, I. Barkai, E. Berkowicz, M. Brumer, R. Fraenkel, A. Glozman, S. Grossman, E. Jacobsohn, O. Klin, I. Lukomsky, L. Shkedy, I. Shtrichman, N. Snapi, M. Yassen, and E. Weiss, Infrared Phys. Technol. 59, 172 (2013).CrossRefGoogle Scholar
  12. 12.
    P. Klipstein, Z. Calahorra, A. Zemel, R. Gatt, E. Harush, E. Jacobsohn, O. Klin, M. Yassen, J. Oiknine-Schlesinger, and E. Weiss, Int. Soc. Opt. Photonics 5612, 42 (2004).Google Scholar
  13. 13.
    G. Chen, W. Sun, and Y. Lv, Infrared Phys. Technol. 81, 262 (2017).CrossRefGoogle Scholar
  14. 14.
    A.P. Craig, A.R.J. Marshall, Z.-B. Tian, S. Krishna, and A. Krier, Appl. Phys. Lett. 103, 253502 (2013).CrossRefGoogle Scholar
  15. 15.
    A. Soibel, C.J. Hill, S.A. Keo, L. Hoglund, R. Rosenberg, R. Kowalczyk, A. Khoshakhlagh, A. Fisher, D.Z.-Y. Ting, and S.D. Gunapala, Appl. Phys. Lett. 105, 023512 (2014).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Luoyang Optoelectro Technology Development CenterLuoyangChina

Personalised recommendations