Journal of Electronic Materials

, Volume 48, Issue 5, pp 3006–3016 | Cite as

Optical, Dielectric and Ferroelectric Characteristics of Gel Grown Erbium Tartrate Hexahydrate Crystals

  • Nazir AhmadEmail author
  • G. M. Bhat
  • P. N. Kotru


With an aim of finding a material suitable for microelectronic applications, experiments were performed to grow erbium tartrate crystals by gel encapsulation. The crystals grow with very well-developed and remarkably flat habit faces as revealed by micro-structural studies, using optical and scanning electron microscopy. The study reveals that the most prominent faces include {001}, {100} and {010}. The crystallographic data analysis of x-ray diffraction results, supplemented by trial-and-error software, shows that the compound crystallizes in a tetragonal crystal system with non-centrosymmetric space group. The high resolution x-ray diffraction results indicating the perfection of the grown crystals are presented. Results of ultraviolet–visible near infra-red (UV–Vis–NIR) spectra leading to determination of energy band gap of 5. 56 eV are described and discussed. The refractive index of the grown material comes out to be 1.40. Comparative analysis of dielectric characteristics of the grown material is made, both for the single crystal and powder form. The material is shown to be ferroelectric with low value of dielectric constant. Behaviour of dielectric constant, dielectric loss and alternating current (ac) conductivity on frequency of the applied ac field at different temperatures is described and discussed. The results are correlated with those of optical and high resolution x-ray diffraction. The material characteristics as revealed by the study suggest that the compound has the basic qualities of a promising material for microelectronic device applications.


SEM XRD HRXRD optical dielectric ferroelectric 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The author (Dr. Nazir Ahmad) is grateful to the Science Engineering Research Board (SERB)/Department of Science and Technology, for the award of National Post Doctorate Fellowship.


  1. 1.
    J. Valasek, Phys. Rev. 17, 475 (1921).CrossRefGoogle Scholar
  2. 2.
    W.G. Cady, Piezoelectricity (New York: McGraw-Hill Book Co, 1964).Google Scholar
  3. 3.
    F. Jona and G. Shirane, Ferroelectric Crystal (New York: Pergamon Press Inc, 1962).Google Scholar
  4. 4.
    F. Sandy and R.V. Jones, Phys. Rev. 168, 481 (1968).CrossRefGoogle Scholar
  5. 5.
    M.E. Lines and A.M. Glass, Principles and Applications of Ferroelectric and Related Materials (New York: Oxford University Press, 1977).Google Scholar
  6. 6.
    M. Dawber, K.M. Rabe, and J. Scott, Rev. Mod. Phys. 77, 1083 (2005).CrossRefGoogle Scholar
  7. 7.
    S. Kambay, G. Schaack, J. Petzelty, and B. Brezinary, J. Phys.: Condens. Matter. 8, 4631 (1996).Google Scholar
  8. 8.
    C.C. Desai, A.H. Parel, and M.S.V. Ramana, Ferroelectrics 23, 102 (1990).Google Scholar
  9. 9.
    M.M. Abdul-Kader, F. Ei-Kabbbany, S. Taha, A. Abosehly, K.K. Tahoon, and A. El-Sharkawy, J. Phys. Chem Solids 52, 655 (1991).CrossRefGoogle Scholar
  10. 10.
    M.M. Abdel-Kader, F. Ei-Kabbbany, and S. Taha, J. Mater. Sci. Mater. Electron. 1, 201 (1991).CrossRefGoogle Scholar
  11. 11.
    M.E. Toress, T. Lopez, J.F. Peraza, J. Stockel, A.C. Yanes, C. Gonzaler-silgo, C. Ruiz-perez, and P.A. Lorenzo-luis, J. Appl. Phys. 84, 5729 (1998).CrossRefGoogle Scholar
  12. 12.
    C.H. Aspinall, Chem. Rev. 102, 1807 (2002).CrossRefGoogle Scholar
  13. 13.
    H.K. Henisch, Crystals in Gels and Liesegang Rings (Cambridge: Cambridge University Press, 1988).CrossRefGoogle Scholar
  14. 14.
    S. Sharma, R. Sati, R.N.P. Choudhary, and T.P. Sinha, Mater. Lett. 16, 281 (1993).CrossRefGoogle Scholar
  15. 15.
    F.C. Hawrhorne, I. Borys, and R.B. Ferguson, Acta Cryst. 39, 540 (1983).Google Scholar
  16. 16.
    B. Want, Current Appl. Phys. 13, 1928 (2013).CrossRefGoogle Scholar
  17. 17.
    M. Moussavi, in Advanced Interconnect Schemes Towards O. Lum, IEEE (1999).Google Scholar
  18. 18.
    D. Neyl, V. Girault, and X. Federspiel, Analytical extraction of thermal conductivities of low-k dielectrics for advanced technologies 2004 IRW final report.Google Scholar
  19. 19.
    R. Singh, R. Sharangpani, K.F. Poole, and M.M. Moslehi, Critical technology challenges in low power electronics, in 1995 IEEUSEMI, Advanced Semiconductor Manufacturing Conference.Google Scholar
  20. 20.
    M. Tagamil, H. Ohtakel, M. Tadal, M. Uekil, F. Itol, T. Taiji, Y. Kasama, T. Iwamoto, H. Wakbayashil, and T. Fukai, High-performance Cu-interconnects with novel seamless low-k SiOCH stacks (SEALS) featured by compositional moulation process for 45 nm-node ULSI Devices, in 2006 Symposium on VLSI Technology Digest of Technical Papers, 2006 IEEE.Google Scholar
  21. 21.
    C. Guedjrx, L. Baud, M. Fayolle, V. Jousseaume, J.F. Guillaumond, J. Cluzel, A. Toffoli, G. Reirnbold, and D. Bowhu, Effect of pore sealing on the reliability of ULWCU interconnects, in 2004 IEEE.Google Scholar
  22. 22.
    A. Nazir, M.M. Ahmad, and P.N. Kotru, J. Sol. Gel Sci. Technol. 83, 708 (2017).CrossRefGoogle Scholar
  23. 23.
    E.S. Dana, A Text Book of Mineralogy with an Extended Treatise on Crystallography and Physical Mineralogy (New York: Wiley Eastern Limited, 1992).Google Scholar
  24. 24.
    P.E. Werner, L. Eriksson, and M. Westdahl, J. Appl. Crystallogr. 18, 367 (1985).CrossRefGoogle Scholar
  25. 25.
    A. Firdous, I. Quasim, M.M. Ahmad, and P.N. Kotru, Bull. Meter. Sci. 33, 377 (2010).CrossRefGoogle Scholar
  26. 26.
    A. Nazir, M.M. Ahmad, and P.N. Kotru, RSC Adv. 5, 9380 (2015).Google Scholar
  27. 27.
    S.K. Arora, V. Patel, R.G. Patel, B. Amin, and A. Kothari, J. Phys. Chem. Solids 65, 965 (2004).CrossRefGoogle Scholar
  28. 28.
    S.K. Arora, V. Patel, B. Chudasama, and B. Amin, J. Cryst. Growth 275, 657 (2005).CrossRefGoogle Scholar
  29. 29.
    S.K. Arora, V. Patel, A. Kothari, and B. Amin, Bull. Mater. Sci. 27, 343 (2004).CrossRefGoogle Scholar
  30. 30.
    M.H. Rahimkutty, B.K. Rajendra, P.K. Shreedharan, M.R. Sudarshankumar, and C.M.K. Nair, Bull. Mater. Sci. 24, 249 (2001).CrossRefGoogle Scholar
  31. 31.
    G. Bhagavannarayana, R.V. Ananthamurthy, G.C. Budakoti, B. Kumar, and K.S. Bartwal, J. Appl. Cryst. 38, 768 (2005).CrossRefGoogle Scholar
  32. 32.
    B.W. Betterman and H. Cole, Rev. Mod. Phys. 36, 681 (1964).CrossRefGoogle Scholar
  33. 33.
    A. Nazir, M.M. Ahmad, and P.N. Kotru, J. Electron. Mater. 45, 2206 (2016).CrossRefGoogle Scholar
  34. 34.
    N. Ahmad and P.N. Kotru, J. Electron. Mater. 46, 6131 (2017).CrossRefGoogle Scholar
  35. 35.
    G. Bhagavannarayana, S. Parthiban, and S. Meenkshisundaram, Cryst. Growth Des. 8, 446 (2008).CrossRefGoogle Scholar
  36. 36.
    M. Meena and C.K. Mahadevan, Mater. Lett. 62, 3742 (2008).CrossRefGoogle Scholar
  37. 37.
    J.M. Lehn, Supramolecular Chemistry scope and perspectives molecules supermolcules molecular devices. Nobel Lecture (1987).Google Scholar
  38. 38.
    Energy Transfer Processes in Condensed Matter, ed. by B. Di Bartolo and A. Karipidou (Plenum Press, London, 1984), p. B114.Google Scholar
  39. 39.
    G.A. Crosby, Mol. Cryst. 1, 37 (1966).CrossRefGoogle Scholar
  40. 40.
    W. De, W. Horrocks Jr., and M. Albin, Prog. Inorg. Chem. 31, 9 (1984).Google Scholar
  41. 41.
    M.E. Torres, T. Lopez, J. Stockel, X. Solans, M. Garcia-Vallés, E. Rodriguez-Castellón, and C. González-Silgo, J. Solid State Chem. 163, 491 (2002).CrossRefGoogle Scholar
  42. 42.
    E.A. Devi and N.F. Mott, Philos. Mag. 22, 903 (1970).CrossRefGoogle Scholar
  43. 43.
    A. Nazir, M.M. Ahmad, and P.N. Kotru, J. Crystal Growth 412, 72 (2015).CrossRefGoogle Scholar
  44. 44.
    F.A. Mir, Eur. J. Phy. Appl. Phy. Feb. 57, 20202 (2012).CrossRefGoogle Scholar
  45. 45.
    S.K. Aora, V. Patel, B. Amin, and A. Kothari, Bull. Mater. Sci. 27, 141 (2004).CrossRefGoogle Scholar
  46. 46.
    S. Kumar, B. Kuar, P.N. Kotru, and K.K. Bamzai, Ferroelectrics 332, 167 (2006).CrossRefGoogle Scholar
  47. 47.
    S. Kumar, B. Kuar, P.N. Kotru, and K.K. Bamzai, Ferroelectrics 350, 5 (2007).CrossRefGoogle Scholar
  48. 48.
    J.C. Maxwell, A Treatise on Electricity and Magnetism, Ist ed. (London: Oxford University Press, 1873), p. 376.Google Scholar
  49. 49.
    K.W. Wagner, Ann. Phys. 40, 817 (1973).Google Scholar
  50. 50.
    C.G. Koops, Phys. Rev. 83, 121 (1951).CrossRefGoogle Scholar
  51. 51.
    A. Bhaskar and S.R. Murthy, J. Mater. Dci. Mater. Electron 24, 3292 (2013).CrossRefGoogle Scholar
  52. 52.
    K.M. Batoo, F.A. Mir, M.S.A. El-sadek, M.D. Shahabuddin, and N. Ahmad, J. Nanopart. Res. 15, 2067 (2013).CrossRefGoogle Scholar
  53. 53.
    H.R. Rukmini, R.N.P. Choudhary, and D.L. Prabhakara, J. Phys. Chem. Solids 61, 1735 (2000).CrossRefGoogle Scholar
  54. 54.
    H.R. Rukmini, R.N.P. Choudhary, and V.V. Rao, J. Phys. Chem. Solids 59, 1541 (1998).CrossRefGoogle Scholar
  55. 55.
    M. Adrees, M. Naseem, and M.M. Hassan, J. Phys. D Appl. Phys. 43, 155401 (2010).CrossRefGoogle Scholar
  56. 56.
    B. Jaffe, R.C. William, and J. Hans, Piezoelectric Ceramics (London: Academic Press, 1971).Google Scholar
  57. 57.
    S. Bhat, S.K. Khosa, P.N. Kotru, and R.P. Tandon, J. Mat. Sci. Lett. 14, 564 (1995).CrossRefGoogle Scholar
  58. 58.
    C. Balarew and R. Dushlew, J. Solid State Chem. 1, 55 (1984).Google Scholar
  59. 59.
    A.K. Jonscher, Colloid Polym. Sci. 253, 131 (1975).CrossRefGoogle Scholar
  60. 60.
    L.A. Dissado and R.M. Hill, Proc. R. Soc. A 390, 131 (1983).CrossRefGoogle Scholar
  61. 61.
    M. Meena and C.K. Mahadevan, Cryst. Res. Technol. 43, 166 (2008).CrossRefGoogle Scholar
  62. 62.
    S. Goma, C.M. Padma, and C.K. Mahadevan, Mater. Lett. 60, 3701 (2006).CrossRefGoogle Scholar
  63. 63.
    S. Suresh, Lat. Am. J. Phys. Educ. 6, 547 (2012).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Condensed Matter Physics Laboratory, Institute of Technology, Zakura CampusUniversity of KashmirHazratbal SrinagarIndia
  2. 2.Crystal Growth and Materials Research Laboratory, Department of Physics and ElectronicsUniversity of JammuJammuIndia

Personalised recommendations