Advertisement

Journal of Electronic Materials

, Volume 48, Issue 5, pp 2978–2985 | Cite as

Photocatalytic Degradation of Methylene Blue (MB) over α-Fe2O3 Nanospindles Prepared by a Hydrothermal Route

  • Xuan Hoa Vu
  • Luong Huu Phuoc
  • Nguyen Dac DienEmail author
  • Thi Thu Ha Pham
  • Luong Duy Thanh
Article
  • 10 Downloads

Abstract

Well-crystalline iron oxide (α-Fe2O3) nanospindles have been prepared using a simple hydrothermal process at temperature of 240°C for different durations (24 h, 36 h, 48 h, and 60 h). The products were characterized by x-ray diffraction analysis, scanning electron microscopy, transmission electron microscopy, energy-dispersive x-ray spectroscopy, and visible absorption measurements. Detailed characterization of their structure and composition confirmed formation of pure α-Fe2O3 with rhombohedral crystal structure. The photocatalytic activity of the obtained α-Fe2O3 for demineralization of methylene blue (MB) in aqueous solution under ultraviolet (UV) light irradiation was evaluated. Ultraviolet–visible (UV–Vis) spectroscopy indicated a decrease in the absorbance intensity and concentration of the dye. Mechanistic investigation revealed that \( \cdot {\hbox{OH}} \) and \( \cdot {\hbox{O}} \) radicals played a crucial role in the degradation process of methylene blue. The α-Fe2O3 nanospindles presented high photocatalytic activity towards MB with degradation efficiency of 78% within 6 h of irradiation. These results demonstrate that α-Fe2O3 nanospindles are suitable for treatment of wastewater.

Keywords

α-Fe2O3 nanospindles photocatalytic degradation methylene blue hydrothermal treatment 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was supported by the Ministry of Education and Training of Vietnam via decision No. 5651/QÐ-BGDÐT-28/12/2018.

Conflict of Interest

The authors declare that they have no conflicts of interest.

References

  1. 1.
    N. Prasad and B. Karthikeyan, Vacuum 146, 501 (2017).CrossRefGoogle Scholar
  2. 2.
    E. György, C. Logofatu, Á. Pérez del Pino, A. Datcu, O. Pascu, and R. Ivan, Ceram. Int. 44, 1826 (2018).CrossRefGoogle Scholar
  3. 3.
    Y. Bessekhouad, D. Robert, and J.V. Weber, J. Photochem. Photobiol. A Chem. 157, 47 (2003).CrossRefGoogle Scholar
  4. 4.
    A. Muthukrishnaraj, S. Vadivel, V.P. Kamalakannan, and N. Balasubramanian, Mater. Res. Innov. 19, 258 (2015).CrossRefGoogle Scholar
  5. 5.
    S. Vadivel, M. Vanitha, A. Muthukrishnaraj, and N. Balasubramanian, J. Water Process Eng. 1, 17 (2014).CrossRefGoogle Scholar
  6. 6.
    X. Qu, D. Xie, L. Cao, and F. Du, Ceram. Int. 40, 12647 (2014).CrossRefGoogle Scholar
  7. 7.
    P. Sharma, R. Kumar, S. Chauhan, D. Singh, and M.S. Chauhan, J. Nanosci. Nanotechnol. 14, 6153 (2014).CrossRefGoogle Scholar
  8. 8.
    X. Hu, J.C. Yu, J. Gong, Q. Li, and G. Li, Adv. Mater. 19, 2324 (2007).CrossRefGoogle Scholar
  9. 9.
    L. Chen, S. Wu, D. Ma, A. Shang, and X. Li, Nano Energy 43, 177 (2018).CrossRefGoogle Scholar
  10. 10.
    A. Rufus, N. Sreeju, V. Vilas, and D. Philip, J. Mol. Liq. 242, 537 (2017).CrossRefGoogle Scholar
  11. 11.
    S. Zeng, K. Tang, T. Li, Z. Liang, D. Wang, Y. Wang, Y. Qi, and W. Zhou, J. Phys. Chem. C 112, 4836 (2008).CrossRefGoogle Scholar
  12. 12.
    S. Zeng, K. Tang, T. Li, Z. Liang, D. Wang, Y. Wang, and W. Zhou, J. Phys. Chem. C 111, 10217 (2007).CrossRefGoogle Scholar
  13. 13.
    J.-J. Wu, Y.-L. Lee, H.-H. Chiang, and D.K.-P. Wong, J. Phys. Chem. B 110, 18108 (2006).CrossRefGoogle Scholar
  14. 14.
    S. Cao and Y. Zhu, J. Phys. Chem. C 112, 6253 (2008).CrossRefGoogle Scholar
  15. 15.
    S.-N. Sun, C. Wei, Z.-Z. Zhu, Y.-L. Hou, S.S. Venkatraman, and Z.-C. Xu, Chin. Phys. B 23, 037503 (2014).CrossRefGoogle Scholar
  16. 16.
    X. Xie, H. Yang, F. Zhang, L. Li, J. Ma, H. Jiao, and J. Zhang, J. Alloys Compd. 477, 90 (2009).CrossRefGoogle Scholar
  17. 17.
    Y. Huang, D. Ding, M. Zhu, W. Meng, Y. Huang, F. Geng, J. Li, J. Lin, C. Tang, Z. Lei, Z. Zhang, and C. Zhi, Sci. Technol. Adv. Mater. 16, 014801 (2015).CrossRefGoogle Scholar
  18. 18.
    J. Huang, M. Yang, C. Gu, M. Zhai, Y. Sun, and J. Liu, Mater. Res. Bull. 46, 1211 (2011).CrossRefGoogle Scholar
  19. 19.
    L.-P. Zhu, N.-C. Bing, L.-L. Wang, H.-Y. Jin, G.-H. Liao, and L.-J. Wang, Dalton Trans. 41, 2959 (2012).CrossRefGoogle Scholar
  20. 20.
    J. Lu, D. Chen, and X. Jiao, J. Colloid Interface Sci. 303, 437 (2006).CrossRefGoogle Scholar
  21. 21.
    J. Qu, Y. Yu, C.-Y. Cao, and W.-G. Song, Chem. A Eur. J. 19, 11172 (2013).CrossRefGoogle Scholar
  22. 22.
    W. Zhao, W. Ma, C. Chen, J. Zhao, and Z. Shuai, J. Am. Chem. Soc. 126, 4782 (2004).CrossRefGoogle Scholar
  23. 23.
    C. Wang and L. Cao, J. Rare Earths 29, 727 (2011).CrossRefGoogle Scholar
  24. 24.
    T. Arai, M. Yanagida, Y. Konishi, Y. Iwasaki, H. Sugihara, and K. Sayama, Catal. Commun. 9, 1254 (2008).CrossRefGoogle Scholar
  25. 25.
    S. Sun, X. Chang, L. Dong, Y. Zhang, Z. Li, and Y. Qiu, J. Solid State Chem. 184, 2190 (2011).CrossRefGoogle Scholar
  26. 26.
    E. Thimsen, F. Le Formal, M. Grätzel, and S.C. Warren, Nano Lett. 11, 35 (2011).CrossRefGoogle Scholar
  27. 27.
    L. Yichuan, W. Gongming, W. Damon, Z. Jin, and L. Yat, Nano Lett. 11, 2119 (2011).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Xuan Hoa Vu
    • 1
  • Luong Huu Phuoc
    • 2
  • Nguyen Dac Dien
    • 3
    Email author
  • Thi Thu Ha Pham
    • 4
  • Luong Duy Thanh
    • 5
  1. 1.Faculty of Physics and TechnologyThai Nguyen University of ScienceThai Nguyen CityVietnam
  2. 2.School of Engineering PhysicsHanoi University of Science and TechnologyHanoiVietnam
  3. 3.Faculty of Labour ProtectionVietnam Trade Union UniversityHanoiVietnam
  4. 4.Faculty of ChemistryThai Nguyen University of ScienceThai Nguyen CityVietnam
  5. 5.Thuyloi UniversityHanoiVietnam

Personalised recommendations