Structural, Optical, Dielectric and Electrical Properties of Al-Doped ZnSe Thin Films

  • T. S. Kayed
  • A. F. QasrawiEmail author
  • Khaled A. Elsayed


In this work, the heavy aluminum doping effects on the compositional, structural, optical, dielectric and electrical properties of ZnSe thin films are investigated. It is observed that the Zn/Se compositional ratio increases with increasing Al content. The major cubic phase of ZnSe becomes more pronounced compared to the hexagonal phase. In addition, the presence of Al in the structure of ZnSe causes lattice constant contraction, decreased the grain size and increased both of the strain and defect density. Optically, the Al doping increased the light absorbability and widens both of the energy band gap and energy interbands which are present in the band gap of ZnSe films. Moreover, the Al doping into ZnSe lowers the high frequency dielectric constant and enhances the optical conductivity. On the other hand, the capacitance spectra which are studied in the frequency domain of 0.01–1.80 GHz displayed negative capacitance effect associated with resonance–antiresonance phenomena upon doping of ZnSe with Al. Such enhancements in the physical properties of ZnSe that are achieved via Al doping make the zinc selenide thin films more appropriate for electronic and optoelectronic technological applications.


Aluminum-doping ZnSe optical dielectric negative capacitance 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



  1. 1.
    V. Mittal, N.P. Sessions, J.S. Wilkinson, and G.S. Murugan, Opt. Mater. Express 7, 712 (2017).CrossRefGoogle Scholar
  2. 2.
    K. Ou, S. Wang, G. Wan, M. Huang, Y. Zhang, L. Bai, and L. Yi, J. Alloy. Compd. 726, 707 (2017).CrossRefGoogle Scholar
  3. 3.
    F. Huang, L. Zhang, Q. Zhang, J. Hou, H. Wang, H. Wang, S. Peng, J. Liu, and G. Cao, ACS Appl. Mater. Interfaces 8, 34482 (2016).CrossRefGoogle Scholar
  4. 4.
    M.M. Ivashchenko, A.S. Opanasyuk, I.P. Buryk, V.A. Lutsenko, and A.V. Shevchenko, J. Nano. Electron. Phys. 9, 1011 (2017).CrossRefGoogle Scholar
  5. 5.
    Y. Xi, L. El Bouanani, Z. Xu, M.A. Quevedo-Lopez, and M. Minary-Jolandan, J. Mater. Chem. C 3, 9781 (2015).CrossRefGoogle Scholar
  6. 6.
    S.E. Al Garni and A.F. Qasrawi, Results Phys. 7, 7168 (2017).CrossRefGoogle Scholar
  7. 7.
    T. Takai, J.H. Chang, K. Godo, T. Hanada, and T. Yao, Phys. Status Solidi B 229, 381 (2002).CrossRefGoogle Scholar
  8. 8.
    S. Marouf, A. Beniaiche, K. Kardarian, M.J. Mendes, O. Sanchez-Sobrado, H. Águas, E. Fortunato, and R. Martins, J. Anal. Appl. Pyrol. 127, 299 (2017).CrossRefGoogle Scholar
  9. 9.
    Y.W. Jun, S.M. Lee, N.J. Kang, and J. Cheon, J. Am. Chem. Soc. 123, 5150 (2001).CrossRefGoogle Scholar
  10. 10.
    T.Y. Abed, A.F. Al Qasrawi, and S.E. Garni, J. Alloys Compd. 731, 1022 (2018).CrossRefGoogle Scholar
  11. 11.
    J.I. Pankove, Optical Processes in Semiconductors (Dover: Courier Corporation, 1975).Google Scholar
  12. 12.
    O. Madelung, Semiconductors: Data Handbook (Berlin: Springer, 2012).Google Scholar
  13. 13.
    M. Neghabi, A. Behjat, and S.M.B. Ghorashi, Int. J. Opt. Photonics 4, 105 (2010).Google Scholar
  14. 14.
    P. Mallikarjana, J. Sivasankar, M.R. Begam, N.M. Rao, S. Kaleemulla, and J. Subrahmanyam, J. Nano. Electron. Phys. 8, 4077 (2016).CrossRefGoogle Scholar
  15. 15.
    G.M. Lohar, H.D. Dhaygude, R.A. Patil, Y.R. Ma, and V.J. Fulari, J. Mater. Sci. Mater. Electron. 26, 8904 (2015).CrossRefGoogle Scholar
  16. 16.
    A.L. Gurskii, S.V. Voitikov, H. Hamadeh, H. Kalisch, M. Heuken, and K. Heime, J. Cryst. Growth 214, 567 (2000).CrossRefGoogle Scholar
  17. 17.
    J.A. Adams, A. Bostwick, T. Ohta, F.S. Ohuchi, and M.A. Olmstead, Phys. Rev. B 71, 195308 (2005).CrossRefGoogle Scholar
  18. 18.
    J. Luyo-Alvarado, M. Meléndez-Lira, M. Lopez-Lopez, I. Hernandez-Calderon, M.E. Constantino, H. Navarro-Contreras, M.A. Vidal, Y. Takagi, K. Samonji, and H. Yonezu, J. Appl. Phys. 84, 1551 (1998).CrossRefGoogle Scholar
  19. 19.
    D.C. Oh, J.H. Chang, T. Takai, J.S. Song, K. Godo, Y.K. Park, K. Shindo, and T. Yao, J. Cryst. Growth 251, 607 (2003).CrossRefGoogle Scholar
  20. 20.
    G.N. Ivanova, D.D. Nedeoglo, N.D. Negeoglo, V.P. Sirkeli, I.M. Tiginyanu, and V.V. Ursaki, J. Appl. Phys. 101, 063543 (2007).CrossRefGoogle Scholar
  21. 21.
    P. Prathap, N. Revathi, Y.V. Subbaiah, K.R. Reddy, and R.W. Miles, Solid State Sci. 11, 224 (2009).CrossRefGoogle Scholar
  22. 22.
    K. Wang, W.Z. Shen, and H.F. Yang, Appl. Surf. Sci. 217, 100 (2003).CrossRefGoogle Scholar
  23. 23.
    N.M. Khusayfan, A.F. Qasrawi, and H.K. Khanfar, Mater. Res. Express 5, 026303 (2018).CrossRefGoogle Scholar
  24. 24.
    J. Bisquert, G. Garcia-Belmonte, A. Pitarch, and H.J. Bolink, Chem. Phys. Lett. 422, 184 (2006).CrossRefGoogle Scholar
  25. 25.
    J. Furlan, I. Skubic, F. Smole, P. Popovic, and M. Topic, J. Appl. Phys. 80, 3854 (1996).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • T. S. Kayed
    • 1
  • A. F. Qasrawi
    • 2
    • 3
    Email author
  • Khaled A. Elsayed
    • 1
  1. 1.Department of Basic Sciences and Humanities, College of EngineeringImam Abdulrahman Bin Faisal UniversityDammamSaudi Arabia
  2. 2.Department of PhysicsArab-American UniversityJeninPalestine
  3. 3.Group of Physics, Faculty of EngineeringAtilim UniversityAnkaraTurkey

Personalised recommendations