Advertisement

Journal of Electronic Materials

, Volume 48, Issue 5, pp 2971–2977 | Cite as

Highly Efficient Electrocatalyst of Pt Electrodeposited on Modified Carbon Substrate with Ni/ZnO for Methanol Oxidation Reaction

  • Rasol Abdullah MirzaieEmail author
  • Azam Anaraki FiroozEmail author
  • Maliheh Bakhtiari
Article
  • 13 Downloads

Abstract

Ni/ZnO with different molar ratios were synthesized by a simple hydrothermal method and used as substrate in the reaction layer of gas diffusion electrodes for a platinum electrodeposition electrocatalyst. Cyclic voltammetry technique was used for platinum electrodeposition on prepared substrate. The physicochemical characterization of the optimized electrocatalyst was done by scanning electron microscopy, x-ray diffraction, and energy-dispersive x-ray. The electrochemical characterization of the platinum electrodeposited on modified carbon substrate with Ni/ZnO particles were studied at a range of Ni concentration in substrate of electrocatalyst by using cyclic voltammetry, linear sweep voltammetry, and electrochemical impedance spectroscopy. The results show that the Ni has a significant effect on performance of prepared electrocatalyst for methanol oxidation reactions (MOR). The presence of 50 wt.% Ni into ZnO in modified carbon substrate shows the good distribution of platinum nanoparticles on the substrate, which generates more active sites for MOR. In addition, the electrochemical surface area of this electrocatalyst reached 105.6 m2 g−1, which was higher than that of commercial Pt/C electrocatalyst (32.45 m2 g−1). The impact of these factors leads to high catalytic activity for MOR. Since methanol can be used as fuel in future portable fuel cells, the synthesized electrocatalysts can provide good conditions for methanol oxidation reactions in these systems.

Keywords

Electrochemistry platinum electrodeposition Ni/ZnO methanol oxidation modified carbon substrate fuel cell 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

The authors would like to acknowledge the support of the Fuel Cell Research Laboratory (FCRL) of Shahid Rajaee Teacher Training University (Tehran, Iran).

References

  1. 1.
    X. Lu, W. Wang, Z. Deng, H. Zhu, S. Wei, S.-P. Ng, W. Guo, and C.-M.L. Wu, RSC Adv. 6, 1729 (2016).CrossRefGoogle Scholar
  2. 2.
    H. Kunitomo, H. Ishitobi, and N. Nakagawa, J. Power Sour. 297, 400 (2015).CrossRefGoogle Scholar
  3. 3.
    Y. Cheng, P.K. Shen, and S.P. Jiang, Int. J. Hydrog. Energy 41, 1935 (2016).CrossRefGoogle Scholar
  4. 4.
    A.A. Siller-Ceniceros, M.E. Sánchez-Castro, D. Morales-Acosta, J.R. Torres-Lubian, E. Martínez, and F.J. Rodríguez-Varela, Appl. Catal B: Environ. 209, 455 (2017).CrossRefGoogle Scholar
  5. 5.
    T. Saida, N. Ogiwara, Y. Takasu, and W. Sugimoto, J. Phys. Chem. C 114, 13390 (2010).CrossRefGoogle Scholar
  6. 6.
    R. Chang, L. Zheng, C. Wang, D. Yang, G. Zhang, and S. Sun, Appl. Catal. B: Environ. 211, 205 (2017).CrossRefGoogle Scholar
  7. 7.
    X. Li, H. Wang, H. Yu, Z. Liu, H. Wang, and F. Peng, Electrochim. Acta 185, 178 (2015).CrossRefGoogle Scholar
  8. 8.
    J. Hosseini, M. Abdolmaleki, H.R. Pouretedal, and M.H. Keshavarz, Chin. J. Catal. 36, 1029 (2015).CrossRefGoogle Scholar
  9. 9.
    X. Chen, C. Si, Y. Gao, J. Frenzel, J. Sun, G. Eggeler, and Z. Zhang, J. Power Sour. 273, 324 (2015).CrossRefGoogle Scholar
  10. 10.
    J. Ju, X. Chen, Y. Shi, D. Wu, and P. Hua, J. Ind. Eng. Chem. 20, 1223 (2014).CrossRefGoogle Scholar
  11. 11.
    O. Akyıldırım, H. Yüksek, H. Saral, İ. Ermiş, T. Eren, and M.L. Yola, J. Mater. Sci.: Mater. Electron. 27, 8559 (2016).Google Scholar
  12. 12.
    S.N. Ab Malek and Y. Mohd, Int. J. Electrochem. Sci. 12, 1561 (2017).CrossRefGoogle Scholar
  13. 13.
    A.M. El-Sawy, H. Tasnim, A.G. Meguerdichian, J. Jin, J.P. Dubrosky, and S.L. Suib, Inorg. Chem. 57, 9977 (2018).CrossRefGoogle Scholar
  14. 14.
    J. Pfrommer, M. Lublow, A. Azarpira, C. Gobel, M. Lucke, A. Steigert, M. Pogrzeba, P.W. Menezes, A. Fischer, T. Schedel-Niedrig, and M. Driess, Angew. Chem. Int. Ed. 53, 5183 (2014).Google Scholar
  15. 15.
    J. Liu, B. Chen, Z. Ni, Y. Deng, X. Han, W. Hu, and C. Zhong, Chem. Electro. Chem. 3, 537 (2016).Google Scholar
  16. 16.
    M. Nischk, P. Mazierski, Z. Wei, K. Siuzdak, N.A. Kouame, E. Kowalska, H. Remita, and A. Zaleska-Medynsk, Appl. Surf. Sci. 387, 89 (2016).CrossRefGoogle Scholar
  17. 17.
    T. Takashima, T. Sano, and H. Irie, Electrochemistry 84, 784 (2016).CrossRefGoogle Scholar
  18. 18.
    K. Zhang, W. Yang, C. Ma, Y. Wang, C. Sun, Y. Chen, P. Duchesne, J. Zhou, J. Wang, Y. Hu, M.N. Banis, P. Zhang, F. Li, J. Li, and L. Chen, NPG Asia Mater. 7, e153 (2015).CrossRefGoogle Scholar
  19. 19.
    T.-Y. Yung, J.-Y. Lee, and L.-K. Liu, Sci. Technol. Adv. Mater. 14, 03500 (2013).CrossRefGoogle Scholar
  20. 20.
    H. Wang, X. Wang, J. Zheng, F. Peng, and H. Yu, Chin. J. Catal. 35, 1687 (2014).CrossRefGoogle Scholar
  21. 21.
    C.S. Sharma, A.S.K. Sinha, and R.N. Singh, Int. J. Hydrog. Energy 39, 20151 (2014).CrossRefGoogle Scholar
  22. 22.
    S. Trasatti and O.A. Petrii, J. Electroanal. Chem. 327, 353 (1992).CrossRefGoogle Scholar
  23. 23.
    P.K. Shen, C. Xu, R. Zeng, and Y. Liu, Electrochem. Solid-State Lett. 9, A39 (2006).CrossRefGoogle Scholar
  24. 24.
    A. Banisharif, S. Hakim Elahi, A. Anaraki Firooz, A.A. Khodadadi, and Y. Mortazavi, Int. J. Nanosci. Nanotechnol. 9, 193 (2013).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Fuel Cell Research Laboratory, Department of Chemistry, Faculty of ScienceShahid Rajaee Teacher Training UniversityTehranIran

Personalised recommendations