Advertisement

Journal of Electronic Materials

, Volume 48, Issue 5, pp 3122–3130 | Cite as

High-Performance Supercapacitor Electrode of HNO3 Doped Polyaniline/Reduced Graphene Oxide Nanocomposites

  • Rini Jain
  • Durlubh K. Sharma
  • Satyendra MishraEmail author
Article
  • 20 Downloads

Abstract

Polyaniline (PANI) nanorods were prepared by a chemical method in the presence of HNO3 as an acid dopant. Reduced graphene oxide (RGO) sheets were synthesized and used as a substrate for the polymerization of PANI, affording the PANI–RGO nanocomposites. The PANI composites with RGO were synthesized in the presence of dopant (dPANI–RGO) and without dopant (PANI–RGO). A comparative study was performed for RGO, PANI, dPANI, PANI–RGO and dPANI–RGO. The nanocomposites were characterized by XRD, FESEM, FTIR and TGA. XRD study showed that the dPANI–RGO is more crystalline in nature. The FESEM studies revealed that longer polyaniline nanotubes can be obtained on RGO sheets in the presence of RGO with HNO3. FTIR results show a greater extent of formation of quinoid units in the presence of both HNO3 and RGO, while benzenoid units show this effect only with HNO3. TGA results showed successful incorporation of RGO sheets with the enhanced thermal stability of dPANI–RGO as compared to dPANI. The electrochemical behavior of dPANI–RGO was also investigated. In the presence of RGO and HNO3, longer polyaniline nanotubes grow on RGO sheets forming a continuous network for electron transfer resulting in low charge transfer resistance for dPANI–RGO (3 Ω) as compared to PANI (29 Ω), which ultimately improves the electrochemical performance of the nanocomposites as a supercapacitor electrode material. The dPANI–RGO nanorods exhibited a specific capacitance of 563 F/g and good cycling stability up to the 5000 cycles with 84% specific retention at 0.5 A g−1.

Graphical Abstract

Keywords

Polyaniline composite electrochemical study cyclic voltammetry supercapacitor 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

Miss Rini Jain is thankful to the Department of Science & Technology (DST), New Delhi for providing an INSPIRE fellowship. Prof. Satyendra Mishra is thankful to the UGC, New Delhi for providing a BSR Faculty Fellowship. The authors are also thankful to Dr. Dhammanand Shirale, School of Physical Sciences, NMU (Jalgaon) for electrochemical measurements.

References

  1. 1.
    K. Zhang, X.P. Han, and Z. Hu, Chem. Soc. Rev. 44, 699 (2015).CrossRefGoogle Scholar
  2. 2.
    B.E. Conway, Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications (New York: Kluwer Academic, 1999).CrossRefGoogle Scholar
  3. 3.
    K. Jost, D. Stenger, C.J. Perez, Mc Donough, K. Lian, Y. Gogotsi, and G. Dion, Energy Environ. Sci. 6, 2698 (2013).CrossRefGoogle Scholar
  4. 4.
    D.P. Hansora, N.G. Shimpi, and S. Mishra, JOM 67, 2855 (2015).  https://doi.org/10.1007/s11837-015-1522-5.CrossRefGoogle Scholar
  5. 5.
    R. Kötz and M. Carlen, Electrochim. Acta 45, 2483 (2000).CrossRefGoogle Scholar
  6. 6.
    W.H. Zuo, R.Z. Li, C. Zhou, Y.Y. Li, J.L. Xi, and J.P. Liu, Adv. Sci. 4, 1600539 (2017).CrossRefGoogle Scholar
  7. 7.
    M.E. Roberts, D.R. Wheeler, B.B. McKenzie, and B.C. Bunker, J. Mater. Chem. 19, 6977 (2009).CrossRefGoogle Scholar
  8. 8.
    V.K. Rana, M. Choi, J. Kong, G. Kim, M. Kim, S. Kim, S. Mishra, R. Singh, and C. Ha, Macromol. Mater. Eng. 296, 131 (2011).CrossRefGoogle Scholar
  9. 9.
    M.A. Bavio, G.G. Acosta, and T. Kessler, J. Power Sources 245, 475 (2014).CrossRefGoogle Scholar
  10. 10.
    Q. Wu, M. Chen, S. Wang, X. Zhang, L. Huan, and G. Diao, Chem. Eng. J. 304, 29 (2016).CrossRefGoogle Scholar
  11. 11.
    Z. Hai, L. Gao, Q. Zhang, H. Xu, D. Cui, Z. Zhang, D. Tsoukalas, J. Tang, S. Yan, and C. Xue, Appl. Surf. Sci. 361, 57 (2016).CrossRefGoogle Scholar
  12. 12.
    X. Li, Y. Liu, W. Guo, J. Chen, W. He, and F. Peng, Electrochim. Acta 135, 550 (2014).CrossRefGoogle Scholar
  13. 13.
    D.P. Hansora, N.G. Shimpi, and S. Mishra, RSC Adv. 5, 107716 (2015).CrossRefGoogle Scholar
  14. 14.
    M. Zhao, X. Wu, and C. Cai, J. Phys. Chem. C 113, 4987 (2009).CrossRefGoogle Scholar
  15. 15.
    T. Sen, S. Mishra, and N. Shimpi, Mater. Sci. Eng. B 220, 13 (2017).CrossRefGoogle Scholar
  16. 16.
    P. Yu, X. Zhao, Y. Li, and Q. Zhang, Appl. Surf. Sci. 393, 37 (2017).CrossRefGoogle Scholar
  17. 17.
    S. Mishra, N. Shimpi, and T. Sen, J. Polym. Res. 20, 49 (2013).CrossRefGoogle Scholar
  18. 18.
    M.D. Catedral, A.K.G. Tapia, and R.V. Saramago, Sci. Diliman 16, 41 (2004).Google Scholar
  19. 19.
    W. Zhao, D.W. He, Y.S. Wang, Y. Hu, X. Du, and X. Hao, RSC Adv. 5, 98241 (2015).CrossRefGoogle Scholar
  20. 20.
    L. Zhang, W. Wang, J. Cheng, Y. Shi, Q. Zhang, P. Dou, and X. Xu, J. Mater. Sci. 53, 787 (2018).CrossRefGoogle Scholar
  21. 21.
    D. Marcano, D. Kosynkin, J. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L. Alemany, W. Lu, and J. Tour, ACS Nano 4, 4806 (2010).CrossRefGoogle Scholar
  22. 22.
    R. Jain and S. Mishra, RSC Adv. 6, 27404 (2016).CrossRefGoogle Scholar
  23. 23.
    S. Stankovich, D.A. Dikin, R.D. Piner, K.M. Kohlhaas, A. Kleinhammes, and Y. Jia, Carbon 45, 1558 (2007).CrossRefGoogle Scholar
  24. 24.
    W. Wu, Y. Li, L. Yang, Y. Ma, D. Pan, and Y. Li, Electrochim. Acta 139, 117 (2014).CrossRefGoogle Scholar
  25. 25.
    Z. Gao, F. Wang, J. Chang, D. Wu, X. Wang, X. Wang, F. Xu, S. Gao, and K. Jiang, Electrochim. Acta 133, 325 (2014).CrossRefGoogle Scholar
  26. 26.
    A. Ehsani, F. Babaei, and M. Nasrollahzadeh, Appl. Surf. Sci. 2, 1060 (2013).CrossRefGoogle Scholar
  27. 27.
    L. Machaut, K. Shin, Z.K. Kalantar, J.D. Plessis, S.H. Han, R.W. Kajim, R.B. Kaner, D. Li, X. Gou, S.J. Ippolito, and W. Wlodarski, J. Phy. Chem. C 114, 16168 (2010).CrossRefGoogle Scholar
  28. 28.
    A. Junwei, J. Liu, Y. Zhou, H. Zhao, Y. Ma, M. Li, M. Yu, and S. Li, J. Phys. Chem. C 116, 19699 (2012).CrossRefGoogle Scholar
  29. 29.
    R. Jain, R. Mehrotra, and S. Mishra, J. Mater. Sci. Mater. Electron. (2018).  https://doi.org/10.1007/s10854-018-0504-0.Google Scholar
  30. 30.
    J. Xu, K. Wang, S. Zu, B. Han, and Z. Wei, ACS Nano 4, 5019 (2010).CrossRefGoogle Scholar
  31. 31.
    E. Subramanian, G. Anitha, and N. Vijayakumar, J. Appl. Polym. Sci. 106, 673 (2007).CrossRefGoogle Scholar
  32. 32.
    R. Kumar, T. Bhuvana, G. Mishra, and A. Sharma, RSC Adv. 6, 73496 (2016).CrossRefGoogle Scholar
  33. 33.
    H.C. Cheng, J.K. Chiao, H.C. Cheng, F.M. Ching, T.L. Wei, and D.H. Ching, J. Polym. Res. 24, 10 (2017).CrossRefGoogle Scholar
  34. 34.
    U. Rana and S. Malik, Chem. Commun. 48, 10862–10864 (2012).CrossRefGoogle Scholar
  35. 35.
    S. Park, J. An, R. Piner, I. Jung, D. Yang, and A. Velamakanni, Chem. Mater. 20, 6592 (2008).CrossRefGoogle Scholar
  36. 36.
    K.I. Winey, T. Kashiwagi, and M. Mu, MRS Bull. 32, 348 (2007).CrossRefGoogle Scholar
  37. 37.
    N.A. Kumar, H.J. Choi, Y.R. Shin, D.W. Chang, L. Dai, and J.B. Baek, ACS Nano 6, 1715 (2012).CrossRefGoogle Scholar
  38. 38.
    G. Gheno, N. R. de Souza Basso, R. Hübler, Macromol. Symp. 299–300, 74 (2011).Google Scholar
  39. 39.
    L.Q. Xu, Y.L. Liu, K.-G. Neoh, E.-T. Kang, and G.D. Fu, Macromol. Rapid Commun. 32, 684 (2011).CrossRefGoogle Scholar
  40. 40.
    N. Chen, Y. Ren, P. Kong, L. Tan, H. Feng, and Y. Luo, Appl. Surf. Sci. 392, 71 (2017).CrossRefGoogle Scholar
  41. 41.
    D.W. Wang, F. Li, J. Zhao, W. Ren, Z.G. Chen, J. Tan, Z.S. Wu, I. Gentle, G.Q. Lu, and H.M. Cheng, ACS Nano 3, 1745 (2009).CrossRefGoogle Scholar
  42. 42.
    Q. Hao, X. Xia, W. Lei, W. Wang, and J. Qiu, Carbon 81, 552 (2015).CrossRefGoogle Scholar
  43. 43.
    H. Fan, H. Wang, N. Zhao, X. Zhang, and J. Xu, J. Mater. Chem. 22, 2774 (2012).CrossRefGoogle Scholar
  44. 44.
    H. Wang, L. Ma, M. Gan, T. Zhou, X. Sun, W. Dai, H. Wang, and S. Wang, Compos. B 92, 405 (2016).CrossRefGoogle Scholar
  45. 45.
    X. Wang, G. Sun, P. Routh, D.H. Kim, W. Huang, and P. Chen, Chem. Soc. Rev. 43, 7067 (2014).CrossRefGoogle Scholar
  46. 46.
    M. Kim, C. Lee, and J. Jang, Adv. Funct. Mater. 24, 2489 (2014).CrossRefGoogle Scholar
  47. 47.
    X. Xia, Q. Hao, W. Lei, W. Wang, D. Sun, and X. Wang, J. Mater. Chem. 22, 16844 (2012).CrossRefGoogle Scholar
  48. 48.
    D. Gui, C. Liu, F. Chen, and J. Liu, Appl. Surf. Sci. 307, 172 (2014).CrossRefGoogle Scholar
  49. 49.
    X. Liu, Y. Wu, Z. Yang, F. Pan, X. Zhong, L. Wang, and Y. Yu, J. Power Sources 293, 799 (2015).CrossRefGoogle Scholar
  50. 50.
    P. Yu, Y. Li, X. Yu, X. Zhao, L. Wu, and Q. Zhang, Langmuir 29, 12051 (2013).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Rini Jain
    • 1
  • Durlubh K. Sharma
    • 2
  • Satyendra Mishra
    • 1
    Email author
  1. 1.University Institute of Chemical TechnologyNorth Maharashtra UniversityJalgaonIndia
  2. 2.Centre for Energy StudiesIndian Institute of TechnologyDelhiIndia

Personalised recommendations