Effect of Substrates on Fracture Mechanism and Process Optimization of Oxidation–Reduction Bonding with Copper Microparticles
Abstract
Oxidation–reduction bonding (ORB) is a promising method to achieve Cu-Cu bonding with copper microparticles by a pressureless and low-temperature process. In this study, the influences of Cu substrates with and without Ag-plating and Au-plating on ORB were investigated. The shear strengths of the different bondings were evaluated and the fracture surfaces were observed. The results show that, comparing to original Cu substrates, Ag-plating and Au-plating substrates improved the shear strength of bonding under all conditions, due to the different fracture modes and formation of the intermetallic compound (IMC). Both Ag-plating and Au-plating substrates prevented the formation of oxide film on the substrate, which caused separation at the interface, thereby increasing the shear strength. Au-Cu IMC formed in the Au plating layer; therefore, the bonding with Au-plating was better strengthened. Based upon this observation, an optimized pre-oxidation ORB process with Cu substrates was successfully developed to reduce the process time and improve the bonding strength.
Keywords
Oxidation–reduction bonding method substrate formic acid pre-oxidationPreview
Unable to display preview. Download preview PDF.
Notes
Acknowledgments
The authors are grateful for the support from China Scholarship Council 201706050096.
References
- 1.T.P. Chow and R. Tyagi, IEEE Trans. Electron. Devices 41, 1481 (1994).CrossRefGoogle Scholar
- 2.P.G. Neudeck, R.S. Okojie, and L.-Y. Chen, in Proceedings of the IEEE (2002), pp. 1065–1076.Google Scholar
- 3.H. Shao, A. Wu, Y. Bao, Y. Zhao, G. Zou, and L. Liu, Mater. Sci. Eng. A 724, 231 (2018).CrossRefGoogle Scholar
- 4.V. Chidambaram, J. Hattel, and J. Hald, Microelectron. Eng. 88, 981 (2011).CrossRefGoogle Scholar
- 5.R. Khazaka, L. Mendizabal, D. Henry, and R. Hanna, IEEE Trans. Power Electron. 30, 2456 (2015).CrossRefGoogle Scholar
- 6.X. Liu, S. Zhou, and H. Nishikawa, J. Mater. Sci. Mater. Electron. 28, 12606 (2017).CrossRefGoogle Scholar
- 7.K. Chu, Y. Sohn, and C. Moon, Scr. Mater. 109, 113 (2015).CrossRefGoogle Scholar
- 8.J. Cho, R. Sheikhi, S. Mallampati, L. Yin, and D. Shaddock, in Electronic Components and Technology Conference (2017), pp. 1553–1559.Google Scholar
- 9.M. Hou and T.W. Eagar, J. Electron. Packag. 114, 443 (1992).CrossRefGoogle Scholar
- 10.C. Chen, S. Noh, H. Zhang, C. Choe, J. Jiu, S. Nagao, and K. Suganuma, Scr. Mater. 146, 123 (2018).CrossRefGoogle Scholar
- 11.Y. Mei, Y. Cao, G. Chen, X. Li, G.-Q. Lu, and X. Chen, IEEE Trans. Device Mater. Reliab. 13, 258 (2013).CrossRefGoogle Scholar
- 12.H. Nishikawa, X. Liu, X. Wang, A. Fujita, N. Kamada, and M. Saito, Mater. Lett. 161, 231 (2015).CrossRefGoogle Scholar
- 13.E. Ide, S. Angata, A. Hirose, and K.F. Kobayashi, Acta Mater. 53, 2385 (2005).CrossRefGoogle Scholar
- 14.G. Zou, J. Yan, F. Mu, A. Wu, J. Ren, A. Hu, and Y. Zhou, Open Surf. Sci. J. 3, 70 (2011).CrossRefGoogle Scholar
- 15.Y. Morisada, T. Nagaoka, M. Fukusumi, Y. Kashiwagi, M. Yamamoto, and M. Nakamoto, J. Electron. Mater. 39, 1283 (2010).CrossRefGoogle Scholar
- 16.V. Dubin, C. Thomas, N. Baxter, C. Block, V. Chikarmane, P. McGregor, D. Jentz, K. Hong, S. Hearne, and C. Zhi, in Interconnect Technology Conference (2001), pp. 271–273.Google Scholar
- 17.R. Gao, J. Shen, F. Xie, Y. Zuo, and D. Wu, J. Electron. Mater. 46, 6388 (2017).CrossRefGoogle Scholar
- 18.T. Yamakawa, T. Takemoto, M. Shimoda, H. Nishikawa, K. Shiokawa, and N. Terada, J. Electron. Mater. 42, 1260 (2013).CrossRefGoogle Scholar
- 19.A. Zinn, R. Stoltenberg, A. Fried, J. Chang, A. Elhawary, J. Beddow, and F. Chiu, Nanotechnology 2, 71 (2012).Google Scholar
- 20.Y. Zuo, J. Shen, Y. Hu, and R. Gao, J. Mater. Process. Technol. 253, 27 (2018).CrossRefGoogle Scholar
- 21.X. Liu and H. Nishikawa, Scr. Mater. 120, 80 (2016).CrossRefGoogle Scholar
- 22.X. Liu and H. Nishikawa, in Electronic Components and Technology Conference (2016), pp. 455–460.Google Scholar
- 23.X. Liu and H. Nishikawa, J. Mater. Sci. Mater. Electron. 28, 5554 (2016).CrossRefGoogle Scholar
- 24.S. Takata, T. Ogura, E. Ide, T. Morita, and A. Hirose, J. Electron. Mater. 42, 507 (2012).CrossRefGoogle Scholar
- 25.T. Yao, T. Matsuda, T. Sano, C. Morikawa, A. Ohbuchi, H. Yashiro, and A. Hirose, J. Electron. Mater. 47, 2193 (2018).CrossRefGoogle Scholar
- 26.Y.Y. Dai, M.Z. Ng, P. Anantha, C.L. Gan, and C.S. Tan, in 3D Systems Integration Conference (2015), pp. TS8. 9.1–TS8. 9.5.Google Scholar
- 27.Y. Zuo, J. Shen, J. Xie, and L. Xiang, J. Mater. Process. Technol. 257, 250 (2018).CrossRefGoogle Scholar
- 28.P. Soininen, K.-E. Elers, V. Saanila, S. Kaipio, T. Sajavaara, and S. Haukka, J. Electrochem. Soc. 152, G122 (2005).CrossRefGoogle Scholar
- 29.I. Kim and J. Kim, J. Appl. Phys. 108, 102807 (2010).CrossRefGoogle Scholar
- 30.S. Harrington, K. Kilway, D.-M. Zhu, J. Phillips, and F. Leibsle, Surf. Sci. 600, 1193 (2006).CrossRefGoogle Scholar
- 31.S. Poulston, R.P. Holroyd, M. Bowker, S.F. Parker, and P.C. Mitchell, Surf. Sci. 402, 599 (1998).CrossRefGoogle Scholar