Advertisement

Effect of Substrates on Fracture Mechanism and Process Optimization of Oxidation–Reduction Bonding with Copper Microparticles

  • Runhua GaoEmail author
  • Siliang He
  • Yu-An Shen
  • Hiroshi Nishikawa
Article

Abstract

Oxidation–reduction bonding (ORB) is a promising method to achieve Cu-Cu bonding with copper microparticles by a pressureless and low-temperature process. In this study, the influences of Cu substrates with and without Ag-plating and Au-plating on ORB were investigated. The shear strengths of the different bondings were evaluated and the fracture surfaces were observed. The results show that, comparing to original Cu substrates, Ag-plating and Au-plating substrates improved the shear strength of bonding under all conditions, due to the different fracture modes and formation of the intermetallic compound (IMC). Both Ag-plating and Au-plating substrates prevented the formation of oxide film on the substrate, which caused separation at the interface, thereby increasing the shear strength. Au-Cu IMC formed in the Au plating layer; therefore, the bonding with Au-plating was better strengthened. Based upon this observation, an optimized pre-oxidation ORB process with Cu substrates was successfully developed to reduce the process time and improve the bonding strength.

Keywords

Oxidation–reduction bonding method substrate formic acid pre-oxidation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

The authors are grateful for the support from China Scholarship Council 201706050096.

References

  1. 1.
    T.P. Chow and R. Tyagi, IEEE Trans. Electron. Devices 41, 1481 (1994).CrossRefGoogle Scholar
  2. 2.
    P.G. Neudeck, R.S. Okojie, and L.-Y. Chen, in Proceedings of the IEEE (2002), pp. 1065–1076.Google Scholar
  3. 3.
    H. Shao, A. Wu, Y. Bao, Y. Zhao, G. Zou, and L. Liu, Mater. Sci. Eng. A 724, 231 (2018).CrossRefGoogle Scholar
  4. 4.
    V. Chidambaram, J. Hattel, and J. Hald, Microelectron. Eng. 88, 981 (2011).CrossRefGoogle Scholar
  5. 5.
    R. Khazaka, L. Mendizabal, D. Henry, and R. Hanna, IEEE Trans. Power Electron. 30, 2456 (2015).CrossRefGoogle Scholar
  6. 6.
    X. Liu, S. Zhou, and H. Nishikawa, J. Mater. Sci. Mater. Electron. 28, 12606 (2017).CrossRefGoogle Scholar
  7. 7.
    K. Chu, Y. Sohn, and C. Moon, Scr. Mater. 109, 113 (2015).CrossRefGoogle Scholar
  8. 8.
    J. Cho, R. Sheikhi, S. Mallampati, L. Yin, and D. Shaddock, in Electronic Components and Technology Conference (2017), pp. 1553–1559.Google Scholar
  9. 9.
    M. Hou and T.W. Eagar, J. Electron. Packag. 114, 443 (1992).CrossRefGoogle Scholar
  10. 10.
    C. Chen, S. Noh, H. Zhang, C. Choe, J. Jiu, S. Nagao, and K. Suganuma, Scr. Mater. 146, 123 (2018).CrossRefGoogle Scholar
  11. 11.
    Y. Mei, Y. Cao, G. Chen, X. Li, G.-Q. Lu, and X. Chen, IEEE Trans. Device Mater. Reliab. 13, 258 (2013).CrossRefGoogle Scholar
  12. 12.
    H. Nishikawa, X. Liu, X. Wang, A. Fujita, N. Kamada, and M. Saito, Mater. Lett. 161, 231 (2015).CrossRefGoogle Scholar
  13. 13.
    E. Ide, S. Angata, A. Hirose, and K.F. Kobayashi, Acta Mater. 53, 2385 (2005).CrossRefGoogle Scholar
  14. 14.
    G. Zou, J. Yan, F. Mu, A. Wu, J. Ren, A. Hu, and Y. Zhou, Open Surf. Sci. J. 3, 70 (2011).CrossRefGoogle Scholar
  15. 15.
    Y. Morisada, T. Nagaoka, M. Fukusumi, Y. Kashiwagi, M. Yamamoto, and M. Nakamoto, J. Electron. Mater. 39, 1283 (2010).CrossRefGoogle Scholar
  16. 16.
    V. Dubin, C. Thomas, N. Baxter, C. Block, V. Chikarmane, P. McGregor, D. Jentz, K. Hong, S. Hearne, and C. Zhi, in Interconnect Technology Conference (2001), pp. 271–273.Google Scholar
  17. 17.
    R. Gao, J. Shen, F. Xie, Y. Zuo, and D. Wu, J. Electron. Mater. 46, 6388 (2017).CrossRefGoogle Scholar
  18. 18.
    T. Yamakawa, T. Takemoto, M. Shimoda, H. Nishikawa, K. Shiokawa, and N. Terada, J. Electron. Mater. 42, 1260 (2013).CrossRefGoogle Scholar
  19. 19.
    A. Zinn, R. Stoltenberg, A. Fried, J. Chang, A. Elhawary, J. Beddow, and F. Chiu, Nanotechnology 2, 71 (2012).Google Scholar
  20. 20.
    Y. Zuo, J. Shen, Y. Hu, and R. Gao, J. Mater. Process. Technol. 253, 27 (2018).CrossRefGoogle Scholar
  21. 21.
    X. Liu and H. Nishikawa, Scr. Mater. 120, 80 (2016).CrossRefGoogle Scholar
  22. 22.
    X. Liu and H. Nishikawa, in Electronic Components and Technology Conference (2016), pp. 455–460.Google Scholar
  23. 23.
    X. Liu and H. Nishikawa, J. Mater. Sci. Mater. Electron. 28, 5554 (2016).CrossRefGoogle Scholar
  24. 24.
    S. Takata, T. Ogura, E. Ide, T. Morita, and A. Hirose, J. Electron. Mater. 42, 507 (2012).CrossRefGoogle Scholar
  25. 25.
    T. Yao, T. Matsuda, T. Sano, C. Morikawa, A. Ohbuchi, H. Yashiro, and A. Hirose, J. Electron. Mater. 47, 2193 (2018).CrossRefGoogle Scholar
  26. 26.
    Y.Y. Dai, M.Z. Ng, P. Anantha, C.L. Gan, and C.S. Tan, in 3D Systems Integration Conference (2015), pp. TS8. 9.1–TS8. 9.5.Google Scholar
  27. 27.
    Y. Zuo, J. Shen, J. Xie, and L. Xiang, J. Mater. Process. Technol. 257, 250 (2018).CrossRefGoogle Scholar
  28. 28.
    P. Soininen, K.-E. Elers, V. Saanila, S. Kaipio, T. Sajavaara, and S. Haukka, J. Electrochem. Soc. 152, G122 (2005).CrossRefGoogle Scholar
  29. 29.
    I. Kim and J. Kim, J. Appl. Phys. 108, 102807 (2010).CrossRefGoogle Scholar
  30. 30.
    S. Harrington, K. Kilway, D.-M. Zhu, J. Phillips, and F. Leibsle, Surf. Sci. 600, 1193 (2006).CrossRefGoogle Scholar
  31. 31.
    S. Poulston, R.P. Holroyd, M. Bowker, S.F. Parker, and P.C. Mitchell, Surf. Sci. 402, 599 (1998).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Runhua Gao
    • 1
    • 2
    Email author
  • Siliang He
    • 1
    • 2
  • Yu-An Shen
    • 1
  • Hiroshi Nishikawa
    • 1
  1. 1.Joining and Welding Research InstituteOsaka UniversityIbarakiJapan
  2. 2.Graduate School of EngineeringOsaka UniversitySuitaJapan

Personalised recommendations