Advertisement

Journal of Electronic Materials

, Volume 48, Issue 5, pp 2940–2949 | Cite as

Enhancement of Tunability Properties of (Ba0.95Ca0.05)TiO3 Lead Free Ceramic by BaWO4 for Microwave Applications

  • Anwar Farag AliEmail author
  • Abd El-razek Mahmoud
  • F. Gami
  • M. M. Nassary
  • S. K. S. Parashar
Article
  • 21 Downloads

Abstract

Lead-free (1 − x)(Ba0.95Ca0.05)TiO3xBaWO4 (abbreviation BCT–BW) (x = 0, 0.01, 0.015, and 0.02) composite ceramics have been synthesized by the sol gel method with subsequent thermal treatment at 1000°C/1200°C as calcined/sintering temperatures. Effect of BW on the structural characteristics and microstructure of the prepared compositions were investigated. X-ray diffraction analysis of pure BCT ceramic showed a tetragonal perovskite structure; however, the other compositions (x > 0) a two phases of BCT (tetragonal structure P4/mm space group) and BW (tetragonal I41/a space group) were detected. Microstructure observation confirmed presence both of spherical and elongated grains of BCT and BW, respectively. Effect of BW addition on the phase transition temperature can be neglected; however, it had a significant impact on decreasing the dielectric permittivity and increasing the thermal stability in all temperature ranges. The dielectric tunable properties of prepared compositions were analyzed, and the results showed an enhancement of BCT tunability properties by BW content. High dielectric tunability 70.12% (at 30 kV) was achieved in composite (0.98 BCT–0.02 BW) due to the lowest value of permittivity and dielectric loss in addition to ferroelectric to ferrorelaxor phase transition behavior for which it is considered a promising material for tunability applications.

Keywords

Lead free ceramics composite sol gel dielectric tunability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

Authors gratefully acknowledge the CV-Raman International Fellowship for the African Researchers awarded 2017 and Project No. NRB-277/MAT/12-13 for financial support. Thanks to Colleges of Nano sensor Lab, School of Applied Science KIIT University, India and Faculty of Science colleges, South Valley University, Egypt for their help.

References

  1. 1.
    L.B. Kong, S. Li, T.S. Zhang, J.W. Zhai, F.Y.C. Boey, and J. Ma, Prog. Mater Sci. 55, 840 (2010).CrossRefGoogle Scholar
  2. 2.
    X.X. Xi, H.C. Li, W.D. Si, I.A. Akimov, J.R. Fox, A.M. Clark, and J.H. Hao, J. Electroceram. 4, 393 (2000).CrossRefGoogle Scholar
  3. 3.
    A. Priya, E. Sinha, and S.K. Rout, J. Solid State Sci. 40, 20 (2013).Google Scholar
  4. 4.
    H.C. Li, W.D. Si, A.D. West, and X.X. Xi, Appl. Phys. Lett. 73, 190 (1998).CrossRefGoogle Scholar
  5. 5.
    S. Patel, A. Chauhan, and R. Vaish, J Solid State Sci. 10, 52 (2016).Google Scholar
  6. 6.
    C.L. Chen, H.H. Feng, Z. Zhang, A. Brazdeikis, Z.J. Huang, W.K. Chu, C.W. Chu, F.A. Miranda, F.W. Van Keuls, and R.R. Romanofsky, Appl. Phys. Lett. 75, 412 (1999).CrossRefGoogle Scholar
  7. 7.
    A. Outzourhit, J.U. Trefny, T. Kito, and B. Yarar, J. Mater. Res. 10, 1411 (1995).CrossRefGoogle Scholar
  8. 8.
    W.T. Chang and L. Sengupta, J. Appl. Phys. 92, 3941 (2002).CrossRefGoogle Scholar
  9. 9.
    M.W. Cole, P.C. Joshi, and M.H. Ervin, J. Appl. Phys. 9, 6336 (2001).CrossRefGoogle Scholar
  10. 10.
    D. Rangappa, T. Fujiwara, and M. Yoshimura, J. Solid state Sci. 1074, 8 (2006).Google Scholar
  11. 11.
    M. Zhang, J. Zhai, B. Shen, and X. Yao, Mater. Res. Bull. 1045, 46 (2011).Google Scholar
  12. 12.
    E.A. Nenasheva, N.F. Kartenko, I.M. Gaidamaka, O.N. Trubitsyna, S.S. Redozubov, A.I. Dedy, and A.D. Kanareykin, J. Eur. Ceram. Soc. 395, 30 (2010).Google Scholar
  13. 13.
    X.G. Tang, K.H. Chew, and H.L.W. Chan, Appl. Phys. Lett. 991, 85 (2004).Google Scholar
  14. 14.
    A. Ahmed, I.A. Goldthorpe, and A.K. Khandani, Appl. Phys. Rev. 2, 011302 (2015).CrossRefGoogle Scholar
  15. 15.
    L. Wu, Y.C. Chen, Y.P. Chou, Y.T. Tsai, and S.Y. Chu, Jpn. J. Appl. Phys. 38, 5154 (1999).CrossRefGoogle Scholar
  16. 16.
    L.C. Sengupta and S. Sengupta, Mater. Res. Innov. 2, 278 (1999).CrossRefGoogle Scholar
  17. 17.
    Q.W. Zhang, J.W. Zhai, and X. Yao, J. Am. Ceram. Soc. 2560, 93 (2010).Google Scholar
  18. 18.
    M.R. Panigrahi and S. Panigrahi, Phys. B 2556, 405 (2010).Google Scholar
  19. 19.
    A.E. Mahmoud, Optik 158, 870 (2018).CrossRefGoogle Scholar
  20. 20.
    A.E. Mahmoud, G. Viola, A.S. Afify, A.M. Babeer, and M. Ferraris, J. Porous Mater. (2016).  https://doi.org/10.1007/s10934-016-0315-8.Google Scholar
  21. 21.
    M.R. Panigrahi and S. Panigrahi, Phys. B 1787, 405 (2010).Google Scholar
  22. 22.
    J.J. Zhang, J.W. Zhai, M.W. Zhang, P. Qi, X. Yu, and X. Yao, J. Phys. D Appl. Phys. 42, 075414 (2009).CrossRefGoogle Scholar
  23. 23.
    A.E. Mahmoud, A.S. Afify, and A. Mohamed, J. Mater. Sci.: Mater. Electron. 28, 11591 (2017).Google Scholar
  24. 24.
    L. Cui, Y.-D. Hou, S. Wang, C. Wang, and M.-K. Zhu, J. Appl. Phys. 107, 054105 (2010).CrossRefGoogle Scholar
  25. 25.
    N. Horchidan, A.C. Ianculescu, L.P. Curecheriu, F. Tudorache, V. Musteata, S. Stoleriu, N. Dragan, D. Crisan, S. Tascu, and L. Mitoseriu, J. Alloys Compd. 4731, 509 (2011).Google Scholar
  26. 26.
    J. Miao, K.H. Chew, J.X. Zhang, Q. Zhan, X.G. Xu, and Y. Jiang, Appl. Phys. Lett. 232902, 102 (2013).Google Scholar
  27. 27.
    S.G. Lee and D.S. Kang, Mater. Lett. 1629, 57 (2003).Google Scholar
  28. 28.
    K.M. Johnson, J. Appl. Phys. 33, 2826 (1962).CrossRefGoogle Scholar
  29. 29.
    M. Leia, Z. Fenga, Z. Hea, B. Liub, Y. Hea, B. Lia, and Y. Xua, Ceram. Int. 8791, 41 (2015).Google Scholar
  30. 30.
    W. Zhao, R. Zuo, J. Fu, and M. Shi, J. Eur. Ceram. Soc. 2299, 34 (2014).Google Scholar
  31. 31.
    C.H. Zhang, Z. Hu, G. Gao, S. Zhao, and Y.D. Huan, J. Mater. Des. 503, 46 (2013).Google Scholar
  32. 32.
    B. Jaffe, W.R. Cook, and H.C. Jaffe, Piezoelectric Ceramics, Chapter 1, Vol. 1 (New York: Academic Press, 1971).Google Scholar
  33. 33.
    G.H. Haertling, Piezoelectric and electrooptic ceramics.Ceramic Materials for Electronics, ed. R.C. Buchanan (New York: Marcel Dekker, 1986), p. 135.Google Scholar
  34. 34.
    A. Udomporn and S. Ananta, J. Mater. Lett. 58, 1154 (2004).CrossRefGoogle Scholar
  35. 35.
    Manoon Sutapun, Wanwilai Vittayakorn, Rangson Muanghlua, and Naratip Vittayakorn, Mater. Des. 564, 86 (2015).Google Scholar
  36. 36.
    Lu Wenfeng Liu, Jinghui Gao Cheng, Ziwei Wang, and Shengtao Li, J. Mater. Des. 119, 136 (2017).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Anwar Farag Ali
    • 1
    • 2
    Email author
  • Abd El-razek Mahmoud
    • 1
    • 3
  • F. Gami
    • 1
  • M. M. Nassary
    • 1
  • S. K. S. Parashar
    • 3
  1. 1.Physics Department, Faculty of ScienceSouth Valley UniversityQenaEgypt
  2. 2.The High Institute of Engineering and Technology, El_TodLuxorEgypt
  3. 3.Nano Sensor Lab, School of Applied ScienceKalinga Institute of Industrial Technology Deemed to be UniversityBhubaneswarIndia

Personalised recommendations