High-Performance Broadband Microwave Absorbers Using Multilayer Dual-Phase Dielectric Composites

  • Utpal Jyoti Mahanta
  • Munu Borah
  • Nidhi Saxena Bhattacharyya
  • Jyoti Prasad GogoiEmail author


In search of high-performance broadband microwave absorption, the design of double-layer dielectric microwave absorbers based on dual-phase polyaniline (PA)/expanded graphite (EG) composites synthesized by in situ polymerization of aniline in different concentrations (0.00 wt.%, 0.15 wt.% and 0.25 wt.%) of EG was optimized. The developed composite reinforcers, viz. PA/EGx=0.15,0.25 and PA/EGx=0.00 (PA), were mixed at different loadings (10 wt.%, 20 wt.% and 30 wt.%) with novolac phenolic resin to form PG and PA composites, then their complex permittivity and permeability in the X-band were characterized. Using the transmission-line model, the reflection loss of single-layer absorbers of different PG and PA composites was estimated (RLc) and measured (RLm). Based on the best results, the design of the double-layer absorber was optimized by tuning the impedance matching between layers by adjusting the arrangement and thickness of the layers in the composites. Promising microwave absorption with RLm ∼ − 48 dB at 9.4 GHz along with − 20-dB and − 30-dB absorption bandwidths of 3 GHz and 2 GHz were obtained for the double-layer design comprising PG5–PA3 composite material layers. Moreover, a partially perforated double-layer design is proposed, showing enhanced absorption bandwidth due to frequency-independent impedance matching at the interface between air and the perforated layer, facilitated by the effective permittivity of the latter.


Polyaniline expanded graphite dielectric response transmission line multilayer microwave absorber 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors are sincerely grateful to the Department of Physics, Sibsagar College, India and Microwave Engineering Laboratory of Tezpur University India, for providing facilities to carry out the research work.


  1. 1.
    E.Y. Jung, J.W. Lee, T.K. Lee, and W.K. Lee, IEEE Trans. Antennas Propag. 60, 3632 (2012).CrossRefGoogle Scholar
  2. 2.
    E. Gorgucci, V. Chandrasekar, and L. Baldini, J. Atmos. Ocean Technol. 23, 1668 (2006).CrossRefGoogle Scholar
  3. 3.
    F. Barbaresco, A. Jeantet, and U. Meier, in IET International Conference on Radar Systems (2007), pp 1–5.Google Scholar
  4. 4.
    J.C.N. Borge, K. Reichert, and K. Hessner, Ocean Model. 61, 21 (2013).CrossRefGoogle Scholar
  5. 5.
    D.M. Pozar, Microwave Engineering (India: Wiley, 2010), p. 2.Google Scholar
  6. 6.
    C.K. Chu, H.K. Huang, H.Z. Liu, C.H. Lin, C.H. Chang, C.L. Wu, C.S. Chang, and Y.H. Wang, IEEE Microw. Wirel. Compon. Lett. 18, 707 (2008).CrossRefGoogle Scholar
  7. 7.
    L.S. Eui, C. Oyoung, and H.T. Hahn, J. Appl. Phys. 104, 033705-1–5-7 (2008).Google Scholar
  8. 8.
    S.P. Pawar, S. Biswas, G.P. Kar, and S. Bose, Polymer 84, 398 (2016).CrossRefGoogle Scholar
  9. 9.
    H.K. Choudhary, S.P. Pawar, R. Kumar, A.V. Anupama, S. Bose, and B. Sahoo, ChemistrySelect 2, 830 (2017).CrossRefGoogle Scholar
  10. 10.
    R. Kumar, H.K. Choudhary, S.P. Pawar, S. Bose, and B. Sahoo, Phys. Chem. Chem. Phys. 19, 23268 (2017).CrossRefGoogle Scholar
  11. 11.
    H.K. Choudhary, R. Kumar, S.P. Pawar, A.V. Anupama, S. Boseand, and B. Sahoo, ChemistrySelect 3, 2120 (2018).CrossRefGoogle Scholar
  12. 12.
    N. Joseph, J. Varghese, and M.T. Sebastian, RSC Adv. 5, 20459 (2015).CrossRefGoogle Scholar
  13. 13.
    N. Joseph, J. Varghese, and M.T. Sebastian, J. Mater. Chem. C 4, 999 (2016).CrossRefGoogle Scholar
  14. 14.
    N. Joseph, J. Varghese, and M.T. Sebastian, Polym. J. 49, 391 (2017).CrossRefGoogle Scholar
  15. 15.
    M.J. Asi and N.I. Dib, Prog. Electromagn. Res. B 26, 101 (2010).CrossRefGoogle Scholar
  16. 16.
    J. Reinert, J. Psilopoulos, J. Grubert, and A.F. Jacob, Microw. Opt. Technol. Lett. 30, 254 (2001).CrossRefGoogle Scholar
  17. 17.
    D. Micheli, R. Pastore, C. Apollo, M. Marchetti, G. Gradoni, V.M. Primiani, and F. Moglie, IEEE Trans. Microw. Theory Tech. 59, 2633 (2011).CrossRefGoogle Scholar
  18. 18.
    E. Michielssen, J. Sajer, S. Ranjithan, and R. Mittra, IEEE Trans. Microw. Theory Tech. 41, 1024 (1993).CrossRefGoogle Scholar
  19. 19.
    S. Konwer, J.P. Gogoi, A. Kalita, and S.K. Dolui, J. Mater. Sci.: Mater. Electron. 22, 1154 (2011).Google Scholar
  20. 20.
    K.H. Wu, T.H. Ting, G.P. Wang, W.D. Ho, and C.C. Shih, Polym. Degrad. Stab. 93, 483 (2008).CrossRefGoogle Scholar
  21. 21.
    G. Salimbeygi, K. Nasouri, A.M. Shoushtari, and R.F. Malek Mazaheri, Macromol. Res. 23, 741 (2015).CrossRefGoogle Scholar
  22. 22.
    M. Faisal and S. Khasim, Iran. Polym. J. 22, 473 (2013).CrossRefGoogle Scholar
  23. 23.
    J.P. Gogoi, N.S. Bhattacharyya, and S. Bhattacharyya, Compos. Part B Eng. 58, 518 (2014).CrossRefGoogle Scholar
  24. 24.
    B.K. Kakati and D. Deka, Energy Fuel 21, 1681 (2007).CrossRefGoogle Scholar
  25. 25.
    J.P. Gogoi, N.S. Bhattacharyya, and K.C.J. Raju, Compos. Part B Eng. 42, 1291 (2011).CrossRefGoogle Scholar
  26. 26.
    T. Wang, P. Wang, Y. Wang, and L. Qiao, Mater. Des. 95, 486 (2016).CrossRefGoogle Scholar
  27. 27.
    S. Bhattacharyya, S. Ghosh, D. Chauasiya, and K.V. Srivastava, Appl. Phys. A Mater. Sci. Process. 118, 207 (2015).CrossRefGoogle Scholar
  28. 28.
    H. Xiong, J.S. Hong, C.M. Luo, and L.L. Zhang, J. Appl. Phys. 114, 064109 (2013).CrossRefGoogle Scholar
  29. 29.
    L. Zhang, P.H. Zhou, H.B. Zhang, L. Liu, G.R. Zhamg, H.Y. Chen, H.P. Lu, J.L. Xie, and L. Deng, IEEE Trans. Magn. 50, 4004305 (2014).Google Scholar
  30. 30.
    W. Li, T.L. Wu, W. Wang, P.C. Zhai, and J.G. Guan, J. Appl. Phys. 116, 044110 (2014).CrossRefGoogle Scholar
  31. 31.
    L. Li, Y. Yang, and C. Liang, J. Appl. Phys. 110, 063702 (2011).CrossRefGoogle Scholar
  32. 32.
    B. Dong, B.L. He, C.L. Xu, and H.L. Li, Mater. Sci. Eng., B 143, 7 (2007).CrossRefGoogle Scholar
  33. 33.
    A.M. Nicolson and G.F. Ross, IEEE Trans. Instrum. Meas. 19, 377 (1970).CrossRefGoogle Scholar
  34. 34.
    M. Matsumoto and Y. Miyata, IEEE Trans. Dielectr. Electr. Insul. 6, 27 (1999).CrossRefGoogle Scholar
  35. 35.
    A. Ohlan, K. Singh, C. Amita, V.N. Singh, and S.K. Dhawan, J. Appl. Phys. 106, 044305 (2009).CrossRefGoogle Scholar
  36. 36.
    X.F. Zhang, P.F. Guan, and X.L. Dong, Appl. Phys. Lett. 96, 223111 (2010).CrossRefGoogle Scholar
  37. 37.
    DDL Chung, in: B. Derby (Ed.), Composite Materials Science and Applications (Springer, New Delhi, 2002), pp. 73–135.Google Scholar
  38. 38.
    P. Saini, V. Choudhary, K.N. Sood, and S.K. Dhawan, J. Appl. Polym. Sci. 113, 3146 (2009).CrossRefGoogle Scholar
  39. 39.
    N.K. Rozanov, IEEE Trans. Antennas Propag. 48, 1230 (2000).CrossRefGoogle Scholar
  40. 40.
    Y.B. Feng, T. Qiu, and C.Y. Shen, J. Magn. Magn. Mater. 318, 8 (2007).CrossRefGoogle Scholar
  41. 41.
    D. Micheli, C. Apollo, R. Pastore, and M. Marchetti, Compos. Sci. Technol. 70, 400 (2010).CrossRefGoogle Scholar
  42. 42.
    W. Xie, H.F. Cheng, Z.Y. Chu, Y.J. Zhou, H.T. Liu, and Z.C. Hui, Mater. Des. 30, 1201 (2009).CrossRefGoogle Scholar
  43. 43.
    A. Fallahi, A. Yahaghi, H.R. Benedickter, H. Abiri, M. Shahabadi, and C. Hafner, IEEE Trans. Antennas Propag. 58, 4051 (2010).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Utpal Jyoti Mahanta
    • 1
    • 4
  • Munu Borah
    • 2
  • Nidhi Saxena Bhattacharyya
    • 3
  • Jyoti Prasad Gogoi
    • 1
    Email author
  1. 1.Department of PhysicsKaziranga UniversityJorhatIndia
  2. 2.Department of PhysicsIndian Institute of Technology GuwahatiGuwahatiIndia
  3. 3.Department of PhysicsTezpur UniversityTezpurIndia
  4. 4.Department of PhysicsSibsagar CollegeSivasagarIndia

Personalised recommendations