Journal of Electronic Materials

, Volume 48, Issue 4, pp 2085–2094 | Cite as

Optimizing Thermoelectric Power Factor in p-Type Hydrogenated Nano-crystalline Silicon Thin Films by Varying Carrier Concentration

  • E. AcostaEmail author
  • V. Smirnov
  • P. S. B. Szabo
  • J. Buckman
  • N. S. Bennett


Most approaches to silicon-based thermoelectrics are focused on reducing the lattice thermal conductivity with minimal deterioration of the thermoelectric power factor. This study investigates the potential of p-type hydrogenated nano-crystalline silicon thin films (μc-Si:H), produced by plasma-enhanced chemical vapor deposition, for thermoelectric applications. We adopt this heterogeneous material structure, known to have a very low thermal conductivity (~ 1 W/m K), in order to obtain an optimized power factor through controlled variation of carrier concentration drawing on stepwise annealing. This approach achieves a best thermoelectric power factor of ~ 3 × 10−4 W/mK2 at a carrier concentration of ~ 4.5 × 1019 cm3 derived from a significant increase of electrical conductivity ~ × 8, alongside a less pronounced reduction of the Seebeck coefficient, while retaining a low thermal conductivity. These thin films have a good thermal and mechanical stability up to 500°C with appropriate adhesion at the film/substrate interface.


Thermoelectric nano-crystalline silicon thin films carrier concentration annealing power factor 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The present study is supported by the National Secretary of Science and Technology of Ecuador (SENESCYT).


  1. 1.
    D.M. Rowe, Thermoelectrics Handbook: Macro to Nano, 1st ed. (Boca Raton: CRC, 2006), pp. 3–4.Google Scholar
  2. 2.
    A. Mehdizadeh Dehkordi, M. Zebarjadi, J. He, and T.M. Tritt, Mater. Sci. Eng R 97, 1 (2015).CrossRefGoogle Scholar
  3. 3.
    C.B. Vining, Nat. Mater. 8, 83 (2009).CrossRefGoogle Scholar
  4. 4.
    S.E. Thompson and S. Parthasarathy, Mater. Today 9, 20 (2006).CrossRefGoogle Scholar
  5. 5.
    A. Müller, M. Ghosh, R. Sonnenschein, and P. Woditsch, Mater. Sci. Eng. B 134, 257 (2006).CrossRefGoogle Scholar
  6. 6.
    L. Weber and E. Gmelin, Appl. Phys. A 53, 136 (1991).CrossRefGoogle Scholar
  7. 7.
    A.I. Boukai, Y. Bunimovich, J. Tahir-Kheli, J.-K. Yu, W.A. Goddard Iii, and J.R. Heath, Nature 451, 168 (2008).CrossRefGoogle Scholar
  8. 8.
    A.I. Hochbaum, R. Chen, R.D. Delgado, W. Liang, E.C. Garnett, M. Najarian, A. Majumdar, and P. Yang, Nature 451, 163 (2008).CrossRefGoogle Scholar
  9. 9.
    J. Tang, H.-T. Wang, D.H. Lee, M. Fardy, Z. Huo, T.P. Russell, and P. Yang, Nano Lett. 10, 4279 (2010).CrossRefGoogle Scholar
  10. 10.
    S.K. Bux, R.G. Blair, P.K. Gogna, H. Lee, G. Chen, M.S. Dresselhaus, R.B. Kaner, and J.P. Fleurial, Adv. Funct. Mater. 19, 2445 (2009).CrossRefGoogle Scholar
  11. 11.
    N. Uchida, T. Tada, Y. Ohishi, Y. Miyazaki, K. Kurosaki, and S. Yamanaka, J. Appl. Phys. 114, 134311 (2013).CrossRefGoogle Scholar
  12. 12.
    N.S. Bennett, N.M. Wight, S.R. Popuri, and J.-W.G. Bos, Nano Energy 16, 350 (2015).CrossRefGoogle Scholar
  13. 13.
    B. Abeles and R.W. Cohen, J. Appl. Phys. 35, 247 (1964).CrossRefGoogle Scholar
  14. 14.
    C.B. Vining, in JPL/California Institute of Technology, Technical report (1988).Google Scholar
  15. 15.
    B. Yu, M. Zebarjadi, H. Wang, K. Lukas, H.Z. Wang, D.Z. Wang, C. Opeil, M. Dresselhaus, G. Chen, and Z.F. Ren, Nano Lett. 12, 2077 (2012).CrossRefGoogle Scholar
  16. 16.
    A. Yusufu, K. Kurosaki, Y. Miyazaki, M. Ishimaru, A. Kosuga, Y. Ohishi, H. Muta, and S. Yamanaka, Nanoscale 6, 13921 (2014).CrossRefGoogle Scholar
  17. 17.
    D. Narducci, E. Selezneva, G. Cerofolini, S. Frabboni, and G. Ottaviani, J. Solid State Chem. 193, 19 (2012).CrossRefGoogle Scholar
  18. 18.
    N. Neophytos, Z. Xanthippi, K. Hans, F. Stefano, L. Bruno, and N. Dario, Nanotechnology 24, 205402 (2013).CrossRefGoogle Scholar
  19. 19.
    N. Attaf, M.S. Aida, and L. Hadjeris, Solid State Commun. 120, 525 (2001).CrossRefGoogle Scholar
  20. 20.
    L. Houben, M. Luysberg, P. Hapke, R. Carius, F. Finger, and H. Wagner, Philos. Mag. A 77, 1447 (1998).CrossRefGoogle Scholar
  21. 21.
    M. Luysberg, P. Hapke, R. Carius, and F. Finger, Philos. Mag. A 75, 31 (1997).CrossRefGoogle Scholar
  22. 22.
    N.M. Wight, E. Acosta, R.K. Vijayaraghavan, P.J. McNally, V. Smirnov, and N.S. Bennett, Therm. Sci. Eng. Prog. 3, 95 (2017).CrossRefGoogle Scholar
  23. 23.
    J. Loureiro, T. Mateus, S. Filonovich, M. Ferreira, J. Figueira, A. Rodrigues, B.F. Donovan, P.E. Hopkins, and I. Ferreira, Appl. Phys. A 120, 1497 (2015).CrossRefGoogle Scholar
  24. 24.
    J. Loureiro, T. Mateus, S. Filonovich, M. Ferreira, J. Figueira, A. Rodrigues, B.F. Donovan, P.E. Hopkins, and I. Ferreira, Thin Solid Films 642, 276 (2017).CrossRefGoogle Scholar
  25. 25.
    E. Acosta, N.M. Wight, V. Smirnov, J. Buckman, and N.S. Bennett, J. Electron. Mater. 47, 3077 (2017).CrossRefGoogle Scholar
  26. 26.
    V. Smirnov, W. Böttler, A. Lambertz, H. Wang, R. Carius, and F. Finger, Phys. Status Solidi C 7, 1053 (2010).Google Scholar
  27. 27.
    A. Lambertz, V. Smirnov, T. Merdzhanova, K. Ding, S. Haas, G. Jost, R.E.I. Schropp, F. Finger, and U. Rau, Sol. Energy Mater. Sol. Cells 119, 134 (2013).CrossRefGoogle Scholar
  28. 28.
    C. Dames, Annu. Rev. Heat Transf. 16, 7 (2013).CrossRefGoogle Scholar
  29. 29.
    Z. Iqbal, S. Veprek, A.P. Webb, and P. Capezzuto, Solid State Commun. 37, 993 (1981).CrossRefGoogle Scholar
  30. 30.
    R. Tsu, J. Gonzalez-Hernandez, S.S. Chao, S.C. Lee, and K. Tanaka, Appl. Phys. Lett. 40, 534 (1982).CrossRefGoogle Scholar
  31. 31.
    E. Vallat-Sauvain, C. Droz, F. Meillaud, J. Bailat, A. Shah, and C. Ballif, J. Non-Cryst. Solids 352, 1200 (2006).CrossRefGoogle Scholar
  32. 32.
    E. Bustarret, M. Hachicha, and M. Brunel, Appl. Phys. Lett. 52, 1675 (1988).CrossRefGoogle Scholar
  33. 33.
    S. Schicho, Amorphous and Microcrystalline Silicon Applied in Very Thin Tandem Solar Cells (Forschungszentrum Jülich GmbH: Jülich, 2011), p. 141.Google Scholar
  34. 34.
    H. Richter, Z.P. Wang, and L. Ley, Solid State Commun. 39, 625 (1981).CrossRefGoogle Scholar
  35. 35.
    I.H. Campbell and P.M. Fauchet, Solid State Commun. 58, 739 (1986).CrossRefGoogle Scholar
  36. 36.
    P.M. Fauchet and I.H. Campbell, Crit. Rev. Solid State Mater. Sci. 14, S79 (1988).CrossRefGoogle Scholar
  37. 37.
    K. Shimakawa, J. Mater. Sci-Mater El 15, 63 (2004).CrossRefGoogle Scholar
  38. 38.
    K. Shimakawa, J. Non-Cryst. Solids 266, 223 (2000).CrossRefGoogle Scholar
  39. 39.
    T. Kamiya, K. Nakahata, Y.T. Tan, Z.A.K. Durrani, and I. Shimizu, J. Appl. Phys. 89, 6265 (2001).CrossRefGoogle Scholar
  40. 40.
    J. Kočka, H. Stuchlíková, M. Ledinský, J. Stuchlík, T. Mates, and A. Fejfar, Sol. Energy Mater. Sol. Cells 93, 1444 (2009).CrossRefGoogle Scholar
  41. 41.
    J. Song, C. Yang, H. Hu, X. Dai, C. Wang, and H. Zhang, Sci. China Phys. Mech. Astron. 56, 2065 (2013).CrossRefGoogle Scholar
  42. 42.
    M. Holtz, W.M. Duncan, S. Zollner, and R. Liu, J. Appl. Phys. 88, 2523 (2000).CrossRefGoogle Scholar
  43. 43.
    T. Merdzhanova, Microcrystalline Silicon Films and Solar Cells Investigated by Photoluminescence Spectroscopy (Forschungszentrums Jülich: Jülich, 2005), p. 7.Google Scholar
  44. 44.
    J.Y.W. Seto, J. Appl. Phys. 46, 5247 (1975).CrossRefGoogle Scholar
  45. 45.
    M.E. Cowher and T.O. Sedgwick, J. Electrochem. Soc. 119, 1565 (1972).CrossRefGoogle Scholar
  46. 46.
    S. Holgado, J. Martı, J. Garrido, and J. Piqueras, J. Electrochem. Soc. 146, 1966 (1999).CrossRefGoogle Scholar
  47. 47.
    S. Sriraman, S. Agarwal, E.S. Aydil, and D. Maroudas, Nature 418, 62 (2002).CrossRefGoogle Scholar
  48. 48.
    Y. Sobajima, S. Kamanaru, H. Muto, J. Chantana, C. Sada, A. Matsuda, and H. Okamoto, J. Non-Cryst. Solids 358, 1966 (2012).CrossRefGoogle Scholar
  49. 49.
    H. Xu, C. Wen, H. Liu, Z.P. Li, and W.Z. Shen, J. Appl. Phys. 113, 093501 (2013).CrossRefGoogle Scholar
  50. 50.
    T. Itoh, K. Yamamoto, K. Ushikoshi, S. Nonomura, and S. Nitta, J. Non-Cryst. Solids 266–269, 201 (2000).CrossRefGoogle Scholar
  51. 51.
    P.C.P. Bronsveld, H.J. van der Wagt, J.K. Rath, R.E.I. Schropp, and W. Beyer, Thin Solid Films 515, 7495 (2007).CrossRefGoogle Scholar
  52. 52.
    F. Fingera, K. Prasad, S. Dubail, A. Shah, X.M. Tang, J. Weber, and W. Beyer, MRS Proc. 219, 383 (2011).CrossRefGoogle Scholar
  53. 53.
    K. Prasad, F. Finger, S. Dubail, A. Shah, and M. Schubert, J. Non-Cryst. Solids 137, 681 (1991).CrossRefGoogle Scholar
  54. 54.
    P. Hapke, F. Finger, R. Carius, H. Wagner, K. Prasad, and R. Flückiger, J. Non-Cryst. Solids 164, 981 (1993).CrossRefGoogle Scholar
  55. 55.
    A.L. A. Dasgupta, O. Vetterl, F. Finger, R. Carius, U. Zastrow, H., H. Wagner, in 16th European Photovoltaic Solar Energy Conference Proceedings (2000), p 557.Google Scholar
  56. 56.
    X.L. Jiang, Y.L. He, and H.L. Zhu, J. Phys. Condens. Matter 6, 713 (1994).CrossRefGoogle Scholar
  57. 57.
    A. Armigliato, D. Nobili, P. Ostoja, M. Servidori, and S. Solmi, J. Electrochem. Soc. 124, C117 (1977).Google Scholar
  58. 58.
    H. Curtins and S. Vepřek, Solid State Commun. 57, 215 (1986).CrossRefGoogle Scholar
  59. 59.
    L. Xu, Z.P. Li, C. Wen, and W.Z. Shen, J. Appl. Phys. 110, 064315 (2011).CrossRefGoogle Scholar
  60. 60.
    P.G. Hugger, J.D. Cohen, B. Yan, G. Yue, J. Yang, and S. Guha, Appl. Phys. Lett. 97, 252103 (2010).CrossRefGoogle Scholar
  61. 61.
    S. Nishida, M. Konagai, and K. Takahashi, Thin Solid Films 112, 7 (1984).CrossRefGoogle Scholar
  62. 62.
    C. Sellmer, T. Bronger, W. Beyer, and R. Carius, Phys. Status Solidi C 7, 670 (2010).Google Scholar
  63. 63.
    S. Li, Y. Jiang, Z. Wu, J. Wu, Z. Ying, Z. Wang, W. Li, and G.J. Salamo, Appl. Surf. Sci. 257, 8326 (2011).CrossRefGoogle Scholar
  64. 64.
    B.L. Liao, B. Qiu, J.W. Zhou, S. Huberman, K. Esfarjani, and G. Chen, Phys. Rev. Lett. 114, 115901 (2015).CrossRefGoogle Scholar
  65. 65.
    T.J. Zhu, G.T. Yu, J. Xu, H.J. Wu, C.G. Fu, X.H. Liu, J.Q. He, and X.B. Zhao, Adv. Electron. Mater. 2, 1600171 (2016).CrossRefGoogle Scholar
  66. 66.
    B. Fu, G. Tang, and Y. Li, Phys. Chem. Chem. Phys. 19, 28517 (2017).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Nanomaterials Lab., School of Engineering and Physical ScienceHeriot-Watt UniversityEdinburghUK
  2. 2.IEK-5 PhotovoltaikForschungszentrum JülichJülichGermany
  3. 3.Centre for Environmental Scanning Electron Microscopy, Institute of Petroleum EngineeringHeriot-Watt UniversityEdinburghUK

Personalised recommendations