Advertisement

Thermoelectric Properties of Magnesium-Doped Tetrahedrite Cu12−xMgxSb4S13

  • P. LevinskyEmail author
  • C. Candolfi
  • A. Dauscher
  • B. Lenoir
  • J. Hejtmánek
Topical Collection: International Conference on Thermoelectrics 2018
Part of the following topical collections:
  1. International Conference on Thermoelectrics 2018

Abstract

Tetrahedrites, naturally occurring sulfosalt minerals, have been shown to exhibit peak ZT values close to unity near 700 K due to the combination of semiconducting-like properties and extremely low lattice thermal conductivity. A wide range of elements can be substituted into tetrahedrites, each of them affecting the thermoelectric properties. Interestingly, all tetrahedrites reported to date contain exclusively d- and p-block elements of the periodic table. Here, we demonstrate that magnesium, an s-block element, can be introduced in Cu12Sb4S13. We successfully prepared a series of polycrystalline samples Cu12−xMgxSb4S13 with nominal compositions of x = 0.5, 1.0, 1.5. Powder x-ray diffraction and chemical mapping confirmed that approximately half of the Mg atoms were incorporated into the tetrahedrite unit cell, while the other half formed electrically insulating MgS precipitates. Thermoelectric properties, measured between 5 K and 673 K, show that the effect of Mg2+ is similar to that of other aliovalent elements substituting for either Cu or Sb. In particular, increasing the Mg content drives the system closer to a semiconducting behavior, leading to a concomitant increase in the thermopower and electrical resistivity and a decrease in the electronic part of the thermal conductivity. Because these two trends counterbalance each other, the overall effect of Mg on the ZT of Cu12Sb4S13 is found to be marginal with a peak ZT of 0.55 at 673 K.

Keywords

Thermoelectric tetrahedrite magnesium substitution material synthesis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was performed with the financial support of the Czech Science Foundation (project No. 18-12761S), the Operational Programme Research, Development and Education (Center of Advanced Applied Sciences project No. CZ.02.1.01/0.0/0.0/ 16_019/0000778) and the Grant Agency of the Czech Technical University in Prague (grant No. SGS16/245/OHK4/3T/14).

Supplementary material

11664_2019_7032_MOESM1_ESM.pdf (528 kb)
Supplementary material 1 (PDF 527 kb)

References

  1. 1.
    H.J. Goldsmid, Thermoelectric Refrigeration (London: Temple University Press, 1964).Google Scholar
  2. 2.
    D.M. Rowe, Thermoelectrics and Its Energy Harvesting (Boca Raton: CRC Press, 2012).Google Scholar
  3. 3.
    K. Suekuni, K. Tsuruta, T. Ariga, and M. Koyano, Appl. Phys. Express 5, 051201 (2012).Google Scholar
  4. 4.
    N.E. Johnson, J.R. Craig, and J.D. Rimstidt, Can. Mineral. 24, 385 (1986).Google Scholar
  5. 5.
    P. Levinsky, J.-B. Vaney, C. Candolfi, A. Dauscher, B. Lenoir, and J. Hejtmánek, J. Electron. Mater. 45, 1351 (2016).Google Scholar
  6. 6.
    X. Lu, D.T. Morelli, Y. Xia, F. Zhou, V. Ozolins, H. Chi, X. Zhou, and C. Uher, Adv. Energy Mater. 3, 342 (2013).Google Scholar
  7. 7.
    R. Chetty, A. Bali, M.H. Naik, G. Rogl, P. Rogl, M. Jain, S. Suwas, and R.C. Mallik, Acta Mater. 100, 266 (2015).Google Scholar
  8. 8.
    R. Chetty, A. Bali, and R.C. Mallik, J. Mater. Chem. C 3, 12364 (2015).Google Scholar
  9. 9.
    K. Suekuni and T. Takabatake, APL Mater. 4, 104503 (2016).Google Scholar
  10. 10.
    E. Lara-Curzio, A.F. May, O. Delaire, M.A. McGuire, X. Lu, C.-Y. Liu, E.D. Case, and D.T. Morelli, J. Appl. Phys. 115, 193515 (2014).Google Scholar
  11. 11.
    Y. Bouyrie, C. Candolfi, S. Pailhès, M.M. Koza, B. Malaman, A. Dauscher, J. Tobola, O. Boisron, L. Saviot, and B. Lenoir, Phys. Chem. Chem. Phys. 17, 19751 (2015).Google Scholar
  12. 12.
    W. Lai, Y. Wang, D.T. Morelli, and X. Lu, Adv. Funct. Mater. 25, 3648 (2015).Google Scholar
  13. 13.
    X. Lu, D.T. Morelli, Y. Wang, W. Lai, Y. Xia, and V. Ozolins, Chem. Mater. 28, 1781 (2016).Google Scholar
  14. 14.
    X. Lu, W. Yao, G. Wang, X. Zhou, D. Morelli, Y. Zhang, H. Chi, S. Hui, and C. Uher, RSC Adv. 7, 12719 (2017).Google Scholar
  15. 15.
    H.I. Tanaka, K. Suekuni, K. Umeo, T. Nagasaki, H. Sato, G. Kutluk, E. Nishibori, H. Kasai, and T. Takabatake, J. Phys. Soc. Jpn. 85, 014703 (2016).Google Scholar
  16. 16.
    P. Levinsky, C. Candolfi, A. Dauscher, J. Tobola, J. Hejtmánek, and B. Lenoir, Phys. Chem. Chem. Phys. (2019). https://doi.org/10.1039/c9cp00213h.Google Scholar
  17. 17.
    Y. Bouyrie, C. Candolfi, V. Ohorodniichuk, B. Malaman, A. Dauscher, J. Tobola, and B. Lenoir, J. Mater. Chem. C 3, 10476 (2015).Google Scholar
  18. 18.
    Y. Bouyrie, C. Candolfi, A. Dauscher, B. Malaman, and B. Lenoir, Chem. Mater. 27, 8354 (2015).Google Scholar
  19. 19.
    D.S.P. Kumar, R. Chetty, O.E. Femi, K. Chattopadhyay, P. Malar, and R.C. Mallik, J. Electron. Mater. 46, 2616 (2017).Google Scholar
  20. 20.
    K. Suekuni, K. Tsuruta, M. Kunii, H. Nishiate, E. Nishibori, S. Maki, M. Ohta, A. Yamamoto, and M. Koyano, J. Appl. Phys. 113, 043712 (2013).Google Scholar
  21. 21.
    T. Barbier, P. Lemoine, S. Gascoin, O.I. Lebedev, A. Kaltzoglou, P. Vaqueiro, A.V. Powell, R.I. Smith, and E. Guilmeau, J. Alloys Compd. 634, 253 (2015).Google Scholar
  22. 22.
    D.S.P. Kumar, R. Chetty, P. Rogl, G. Rogl, E. Bauer, P. Malar, and R.C. Mallik, Intermetallics 78, 21 (2016).Google Scholar
  23. 23.
    Y. Kosaka, K. Suekuni, K. Hashikuni, Y. Bouyrie, M. Ohta, and T. Takabatake, Phys. Chem. Chem. Phys. 19, 8874 (2017).Google Scholar
  24. 24.
    X. Lu and D.T. Morelli, Phys. Chem. Chem. Phys. 15, 5762 (2013).Google Scholar
  25. 25.
    X. Lu, D.T. Morelli, Y. Xia, and V. Ozolins, Chem. Mater. 27, 408 (2015).Google Scholar
  26. 26.
    Y. Bouyrie, C. Candolfi, J.B. Vaney, A. Dauscher, and B. Lenoir, J. Electron. Mater. 45, 1601 (2016).Google Scholar
  27. 27.
    Y. Bouyrie, S. Sassi, C. Candolfi, J.-B. Vaney, A. Dauscher, and B. Lenoir, Dalton Trans. 45, 7294 (2016).Google Scholar
  28. 28.
    A.P. Gonçalves, E.B. Lopes, B. Villeroy, J. Monnier, C. Godart, and B. Lenoir, RSC Adv. 6, 102359 (2016).Google Scholar
  29. 29.
    A.P. Gonçalves, E.B. Lopes, M.F. Montemor, J. Monnier, and B. Lenoir, J. Electron. Mater. 47, 2880 (2018).Google Scholar
  30. 30.
    J. Rodriguez-Carvajal, Physica B 192, 55 (1993).Google Scholar
  31. 31.
    E. Alleno, D. Bérardan, C. Byl, C. Candolfi, R. Daou, R. Decourt, E. Guilmeau, S. Hébert, J. Hejtmanek, B. Lenoir, P. Masschelein, V. Ohorodniichuk, M. Pollet, S. Populoh, D. Ravot, O. Rouleau, and M. Soulier, Rev. Sci. Instrum. 86, 011301 (2015).Google Scholar
  32. 32.
    P. Vaqueiro, G. Guélou, A. Kaltzoglou, R.I. Smith, T. Barbier, E. Guilmeau, and A.V. Powell, Chem. Mater. 29, 4080 (2017).Google Scholar
  33. 33.
    F.-H. Sun, C.-F. Wu, Z. Li, Y. Pan, Asfandiyar, J. Dong, and J.-F. Li, RSC Adv. 7, 18909 (2017).Google Scholar
  34. 34.
    R.D. Shannon, Acta Crystallogr. A 32, 75 (1976).Google Scholar
  35. 35.
    E. Makovicky and S. Karup-Møller, Neues Jb. Miner. Abh. 179, 73 (2003).Google Scholar
  36. 36.
    K. Knížek, P. Levinský, and J. Hejtmánek, J. Electron. Mater. (2019).  https://doi.org/10.1007/s11664-019-06960-x.Google Scholar
  37. 37.
    R. Chetty, D.S.P. Kumar, G. Rogl, P. Rogl, E. Bauer, H. Michor, S. Suwas, S. Puchegger, G. Giester, and R.C. Mallik, Phys. Chem. Chem. Phys. 17, 1716 (2014).Google Scholar
  38. 38.
    D.I. Nasonova, V.Y. Verchenko, A.A. Tsirlin, and A.V. Shevelkov, Chem. Mater. 28, 6621 (2016).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Institut Jean LamourUMR 7198 – CNRS – Université de LorraineNancyFrance
  2. 2.Institute of Physics of the Czech Academy of SciencesPrague 8Czech Republic
  3. 3.Faculty of Nuclear Sciences and Physical EngineeringCzech Technical University in PraguePrague 1Czech Republic

Personalised recommendations