Thermoelectric Properties of Magnesium-Doped Tetrahedrite Cu12−xMgxSb4S13
Abstract
Tetrahedrites, naturally occurring sulfosalt minerals, have been shown to exhibit peak ZT values close to unity near 700 K due to the combination of semiconducting-like properties and extremely low lattice thermal conductivity. A wide range of elements can be substituted into tetrahedrites, each of them affecting the thermoelectric properties. Interestingly, all tetrahedrites reported to date contain exclusively d- and p-block elements of the periodic table. Here, we demonstrate that magnesium, an s-block element, can be introduced in Cu12Sb4S13. We successfully prepared a series of polycrystalline samples Cu12−xMgxSb4S13 with nominal compositions of x = 0.5, 1.0, 1.5. Powder x-ray diffraction and chemical mapping confirmed that approximately half of the Mg atoms were incorporated into the tetrahedrite unit cell, while the other half formed electrically insulating MgS precipitates. Thermoelectric properties, measured between 5 K and 673 K, show that the effect of Mg2+ is similar to that of other aliovalent elements substituting for either Cu or Sb. In particular, increasing the Mg content drives the system closer to a semiconducting behavior, leading to a concomitant increase in the thermopower and electrical resistivity and a decrease in the electronic part of the thermal conductivity. Because these two trends counterbalance each other, the overall effect of Mg on the ZT of Cu12Sb4S13 is found to be marginal with a peak ZT of 0.55 at 673 K.
Keywords
Thermoelectric tetrahedrite magnesium substitution material synthesisPreview
Unable to display preview. Download preview PDF.
Notes
Acknowledgments
This work was performed with the financial support of the Czech Science Foundation (project No. 18-12761S), the Operational Programme Research, Development and Education (Center of Advanced Applied Sciences project No. CZ.02.1.01/0.0/0.0/ 16_019/0000778) and the Grant Agency of the Czech Technical University in Prague (grant No. SGS16/245/OHK4/3T/14).
Supplementary material
References
- 1.H.J. Goldsmid, Thermoelectric Refrigeration (London: Temple University Press, 1964).Google Scholar
- 2.D.M. Rowe, Thermoelectrics and Its Energy Harvesting (Boca Raton: CRC Press, 2012).Google Scholar
- 3.K. Suekuni, K. Tsuruta, T. Ariga, and M. Koyano, Appl. Phys. Express 5, 051201 (2012).Google Scholar
- 4.N.E. Johnson, J.R. Craig, and J.D. Rimstidt, Can. Mineral. 24, 385 (1986).Google Scholar
- 5.P. Levinsky, J.-B. Vaney, C. Candolfi, A. Dauscher, B. Lenoir, and J. Hejtmánek, J. Electron. Mater. 45, 1351 (2016).Google Scholar
- 6.X. Lu, D.T. Morelli, Y. Xia, F. Zhou, V. Ozolins, H. Chi, X. Zhou, and C. Uher, Adv. Energy Mater. 3, 342 (2013).Google Scholar
- 7.R. Chetty, A. Bali, M.H. Naik, G. Rogl, P. Rogl, M. Jain, S. Suwas, and R.C. Mallik, Acta Mater. 100, 266 (2015).Google Scholar
- 8.R. Chetty, A. Bali, and R.C. Mallik, J. Mater. Chem. C 3, 12364 (2015).Google Scholar
- 9.K. Suekuni and T. Takabatake, APL Mater. 4, 104503 (2016).Google Scholar
- 10.E. Lara-Curzio, A.F. May, O. Delaire, M.A. McGuire, X. Lu, C.-Y. Liu, E.D. Case, and D.T. Morelli, J. Appl. Phys. 115, 193515 (2014).Google Scholar
- 11.Y. Bouyrie, C. Candolfi, S. Pailhès, M.M. Koza, B. Malaman, A. Dauscher, J. Tobola, O. Boisron, L. Saviot, and B. Lenoir, Phys. Chem. Chem. Phys. 17, 19751 (2015).Google Scholar
- 12.W. Lai, Y. Wang, D.T. Morelli, and X. Lu, Adv. Funct. Mater. 25, 3648 (2015).Google Scholar
- 13.X. Lu, D.T. Morelli, Y. Wang, W. Lai, Y. Xia, and V. Ozolins, Chem. Mater. 28, 1781 (2016).Google Scholar
- 14.X. Lu, W. Yao, G. Wang, X. Zhou, D. Morelli, Y. Zhang, H. Chi, S. Hui, and C. Uher, RSC Adv. 7, 12719 (2017).Google Scholar
- 15.H.I. Tanaka, K. Suekuni, K. Umeo, T. Nagasaki, H. Sato, G. Kutluk, E. Nishibori, H. Kasai, and T. Takabatake, J. Phys. Soc. Jpn. 85, 014703 (2016).Google Scholar
- 16.P. Levinsky, C. Candolfi, A. Dauscher, J. Tobola, J. Hejtmánek, and B. Lenoir, Phys. Chem. Chem. Phys. (2019). https://doi.org/10.1039/c9cp00213h.Google Scholar
- 17.Y. Bouyrie, C. Candolfi, V. Ohorodniichuk, B. Malaman, A. Dauscher, J. Tobola, and B. Lenoir, J. Mater. Chem. C 3, 10476 (2015).Google Scholar
- 18.Y. Bouyrie, C. Candolfi, A. Dauscher, B. Malaman, and B. Lenoir, Chem. Mater. 27, 8354 (2015).Google Scholar
- 19.D.S.P. Kumar, R. Chetty, O.E. Femi, K. Chattopadhyay, P. Malar, and R.C. Mallik, J. Electron. Mater. 46, 2616 (2017).Google Scholar
- 20.K. Suekuni, K. Tsuruta, M. Kunii, H. Nishiate, E. Nishibori, S. Maki, M. Ohta, A. Yamamoto, and M. Koyano, J. Appl. Phys. 113, 043712 (2013).Google Scholar
- 21.T. Barbier, P. Lemoine, S. Gascoin, O.I. Lebedev, A. Kaltzoglou, P. Vaqueiro, A.V. Powell, R.I. Smith, and E. Guilmeau, J. Alloys Compd. 634, 253 (2015).Google Scholar
- 22.D.S.P. Kumar, R. Chetty, P. Rogl, G. Rogl, E. Bauer, P. Malar, and R.C. Mallik, Intermetallics 78, 21 (2016).Google Scholar
- 23.Y. Kosaka, K. Suekuni, K. Hashikuni, Y. Bouyrie, M. Ohta, and T. Takabatake, Phys. Chem. Chem. Phys. 19, 8874 (2017).Google Scholar
- 24.X. Lu and D.T. Morelli, Phys. Chem. Chem. Phys. 15, 5762 (2013).Google Scholar
- 25.X. Lu, D.T. Morelli, Y. Xia, and V. Ozolins, Chem. Mater. 27, 408 (2015).Google Scholar
- 26.Y. Bouyrie, C. Candolfi, J.B. Vaney, A. Dauscher, and B. Lenoir, J. Electron. Mater. 45, 1601 (2016).Google Scholar
- 27.Y. Bouyrie, S. Sassi, C. Candolfi, J.-B. Vaney, A. Dauscher, and B. Lenoir, Dalton Trans. 45, 7294 (2016).Google Scholar
- 28.A.P. Gonçalves, E.B. Lopes, B. Villeroy, J. Monnier, C. Godart, and B. Lenoir, RSC Adv. 6, 102359 (2016).Google Scholar
- 29.A.P. Gonçalves, E.B. Lopes, M.F. Montemor, J. Monnier, and B. Lenoir, J. Electron. Mater. 47, 2880 (2018).Google Scholar
- 30.J. Rodriguez-Carvajal, Physica B 192, 55 (1993).Google Scholar
- 31.E. Alleno, D. Bérardan, C. Byl, C. Candolfi, R. Daou, R. Decourt, E. Guilmeau, S. Hébert, J. Hejtmanek, B. Lenoir, P. Masschelein, V. Ohorodniichuk, M. Pollet, S. Populoh, D. Ravot, O. Rouleau, and M. Soulier, Rev. Sci. Instrum. 86, 011301 (2015).Google Scholar
- 32.P. Vaqueiro, G. Guélou, A. Kaltzoglou, R.I. Smith, T. Barbier, E. Guilmeau, and A.V. Powell, Chem. Mater. 29, 4080 (2017).Google Scholar
- 33.F.-H. Sun, C.-F. Wu, Z. Li, Y. Pan, Asfandiyar, J. Dong, and J.-F. Li, RSC Adv. 7, 18909 (2017).Google Scholar
- 34.R.D. Shannon, Acta Crystallogr. A 32, 75 (1976).Google Scholar
- 35.E. Makovicky and S. Karup-Møller, Neues Jb. Miner. Abh. 179, 73 (2003).Google Scholar
- 36.K. Knížek, P. Levinský, and J. Hejtmánek, J. Electron. Mater. (2019). https://doi.org/10.1007/s11664-019-06960-x.Google Scholar
- 37.R. Chetty, D.S.P. Kumar, G. Rogl, P. Rogl, E. Bauer, H. Michor, S. Suwas, S. Puchegger, G. Giester, and R.C. Mallik, Phys. Chem. Chem. Phys. 17, 1716 (2014).Google Scholar
- 38.D.I. Nasonova, V.Y. Verchenko, A.A. Tsirlin, and A.V. Shevelkov, Chem. Mater. 28, 6621 (2016).Google Scholar