Advertisement

Structural, Magnetic, Magnetocaloric and Mössbauer Spectrometry Study of \({\hbox {Gd}}_2{\hbox {Fe}}_{17-x}{\hbox {Cu}}_x\) (\(x=\) 0, 0.5, 1 and 1.5) Compounds

  • M. Saidi
  • K. NouriEmail author
  • S. Walha
  • E. Dhahri
  • A. Kabadou
  • M. Jemmali
  • L. Bessais
Article

Abstract

The structure, magnetic and magnetocaloric properties of arc-melted \({\hbox {Gd}}_2{\hbox {Fe}}_{17-x}{\hbox {Cu}}_x\) (\(x =\) 0, 0.5, 1 and 1.5) solid solution have been studied. The Rietveld refinement shows that these compounds crystallize in the rhombohedral \({\hbox {Th}}_2{\hbox {Zn}}_{17}\)-type structure with the \(R{\bar{3}}m\) space group, and the substitution of iron by copper leads to a decrease in the unit cell volume. The Curie temperature (\(T_{\mathrm{C}}\)) of the prepared samples depends on the copper content. The reduction of the ferromagnetic phase transition temperature from 475 K (for \(x = 0\)) to 460 K (for \(x = 1.5\)) is due to the substitution of the magnetic element (Fe) by non-magnetic atoms (Cu). The magnetocaloric effect was determined in the vicinity of the Curie temperature \(T_{\mathrm{C}}\). By increasing the Cu content, an increase in the values of magnetic entropy (\(\Delta S_{\mathrm{M}}\)) in a low applied field is observed. The preferred inequivalent crystallographic site of Cu atoms was determined by Mössbauer spectrometry analysis based on the isomer shift parameter correlation with the Wigner–Seitz cell volumes.

Keywords

Rare-earth alloys and compounds magnetization Mössbauer spectrometry magnetocaloric effect 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work is mainly supported by the CNRS, the PHC MAGHREB Project 15MAG07 and the Tunisian Ministry of Higher Education and Scientific Research and Technology.

References

  1. 1.
    E. Burzo, A. Chelkovski, and H.R. Kirchmayr, Landolt-Bornstein Handbook (Berlin, 1990)Google Scholar
  2. 2.
    S. Chikazumi, Physics of Ferromagnetism, 2nd edn. (Oxford: Oxford University Press, 1997).Google Scholar
  3. 3.
    P.J. Cregg and L. Bessais, J. Magn. Magn. Mater. 202, 554 (1999).Google Scholar
  4. 4.
    D. Givord and R. Lemaire, IEEE Trans. Magn. 10, 109 (1974).Google Scholar
  5. 5.
    K.H.J. Buschow, Rep. Prog. Phys. 40, 1179 (1977).Google Scholar
  6. 6.
    K.H.J. Bushow, Handbook of Magnetic Materials, vol. 4 (Amsterdam: Elsevier, 1988).Google Scholar
  7. 7.
    E. Belorizky, M.A. Fremy, J.P. Gavigan, D. Givord, and H.S. Li, J. Appl. Phys. 61, 3971 (1987).Google Scholar
  8. 8.
    K.H.J. Buschow, Rep. Prog. Phys. 54, 1123 (1991).Google Scholar
  9. 9.
    J.J.M. Franse, R.J. Radwanski, and K.H.J. Buschow, Handb. Magn. Mater. 7, 307 (1993).Google Scholar
  10. 10.
    K.H.J. Buschow, Magnetism and Processing of Permanent Magnet, Volume 10 of Handbook of Magnetic Materials (Amsterdam: Elsevier, 1997).Google Scholar
  11. 11.
    J.X. Zhang, L. Bessais, C. Djega-Mariadassou, E. Leroy, and A. Percheron-Guegan, Appl. Phys. Lett. 80, 1960 (2002).Google Scholar
  12. 12.
    L. Bessais, E. Dorolti, and C. Djega-Mariadassou, Appl. Phys. Lett. 87, 192503 (2005).Google Scholar
  13. 13.
    B. Barbara, D. Gignoux, D. Givord, F. Givord, and R. Lemaire, Int. J. Magn. 4, 77 (1973).Google Scholar
  14. 14.
    H.R. Kirchmayr and C.A. Poldy, J. Magn. Magn. Mater. 8, 1 (1978).Google Scholar
  15. 15.
    K.J. Strnat, Handbook of Magnetic Materials, vol. 4 (Amsterdam: Elsevier, 1988).Google Scholar
  16. 16.
    Z. Wang and R.A. Dunlap, J. Phys. Condens. Matter 5, 2407 (1993).Google Scholar
  17. 17.
    Z.W. Li, X.Z. Zhou, and A.H. Morrish, Phys. Rev. B 51, 2891 (1995).Google Scholar
  18. 18.
    M. Katter, J. Wecker, and L. Schultz, J. Appl. Phys. 70, 3188 (1991).Google Scholar
  19. 19.
    G. Calestani, N. Magnani, A. Paoluzi, L. Pareti, and C. Rizzoli, Phys. Rev. B 68, 054424 (2003).Google Scholar
  20. 20.
    Y. Janssen, S. Chang, A. Kreyssig, A. Kracher, Y. Mozharivskyj, S. Misra, and P.C. Canfield, Phys. Rev. B 76, 054420 (2007).Google Scholar
  21. 21.
    L. Bessais, E. Dorolti, and C. Djega-Mariadassou, J. Appl. Phys. 97, 013902 (2005).Google Scholar
  22. 22.
    X.C. Kou, F.R. de Boer, R. Grossinger, G. Wiesinger, H. Suzuki, H. Kitazawa, T. Takamasu, and G. Kido, J. Magn. Magn. Mater. 177, 1002 (1998).Google Scholar
  23. 23.
    H. Chen, Y. Zhang, J. Han, H. Du, Ch. Wang, and Y. Yang, J. Magn. Magn. Mater. 320, 1382 (2008).Google Scholar
  24. 24.
    P. Alvarez, P. Gorria, V. Franco, J.S. Marcos, M.J. Perez, J.L.S. Llamazares, I.P. Orench, and J.A. Blanco, J. Phys. Condens. Matter 22, 216005 (2010).Google Scholar
  25. 25.
    P. Alvarez, P. Gorria, J.S. Marcos, J.L.S. Llamazares, and J.A. Blan, J. Phys. Condens. Matter 25, 496010 (2013).Google Scholar
  26. 26.
    R. Guetari, R. Bez, A. Belhadj, K. Zehani, A. Bezergheanu, N. Mliki, L. Bessais, and C.B. Cizmas, J. Alloys Compd. 588, 64 (2014).Google Scholar
  27. 27.
    S. Charfeddine, K. Zehani, L. Bessais, and A. Korchef, J. Solid State Chem. 238, 15 (2016).Google Scholar
  28. 28.
    C. Djega-Mariadassou and L. Bessais, J. Magn. Magn. Mater. 210, 81 (2000).Google Scholar
  29. 29.
    A.M. Tishin, J. Magn. Magn. Mater. 316, 351 (2007).Google Scholar
  30. 30.
    K.A. Gschneidner Jr., V.K. Pecharsky, and A.O. Tsokol, Rep. Prog. Phys. 68, 1479 (2005).Google Scholar
  31. 31.
    B.F. Yu, Q. Gao, B. Zhang, X.Z. Meng, and Z. Chen, Int. J. Refrig. 26, 622 (2003).Google Scholar
  32. 32.
    O. Tegus, E. Brük, L. Zhang, O. Dagula, K.H.J. Buschow, and F.R. de Boer, Phys. B 319, 174 (2002).Google Scholar
  33. 33.
    G.V. Brown, J. Appl. Phys. 47, 3673 (1976).Google Scholar
  34. 34.
    V.K. Pecharsky and K.A. Gschneidner Jr., Phys. Rev. Lett. 78, 4494 (1997).Google Scholar
  35. 35.
    F. Hu, B. Shen, J. Sun, Z. Cheng, G. Rao, and X. Zhang, Appl. Phys. Lett. 78, 3675 (2001).Google Scholar
  36. 36.
    H.M. Rietveld, J. Appl. Crystallogr. 2, 65 (1969).Google Scholar
  37. 37.
    H. Rietveld, Acta Crystallogr. 22, 151 (1967).Google Scholar
  38. 38.
    C. Djega-Mariadassou, L. Bessais, A. Nandra, and E. Burzo, Phys. Rev. B 68, 24406 (2003).Google Scholar
  39. 39.
    R. Bensalem, W. Tebib, S. Alleg, J.J. Sunol, L. Bessais, and J.M. Greneche, J. Alloys Compd. 471, 24 (2009).Google Scholar
  40. 40.
    R. Fersi, N. Mliki, L. Bessais, R. Guetari, V. Russie, and M. Cabie, J. Alloys Compd. 522, 14 (2012).Google Scholar
  41. 41.
    J. Rodriguez-Carvajal, Abstract of the Satellite Meeting on Powder Diffraction of the XV Congress of the IUCr (Toulouse, France, 1990), p. 127Google Scholar
  42. 42.
    J. Rodriguez-Carvajal, M.T. Fernandez-Diaz, and J.L. Martinez, J. Phys. Condens. Matter 3, 32158 (1991).Google Scholar
  43. 43.
    J. Rodriguez-Carvajal, Phys. B 192, 55 (1993).Google Scholar
  44. 44.
    S. Khazzan, N. Mliki, L. Bessais, and C. Djega-Mariadassou, J. Magn. Magn. Mater. 322, 224 (2010).Google Scholar
  45. 45.
    L. Bessais, C. Djega-Mariadassou, D.K. Tung, V.V. Hong, and N.X. Phuc, J. Alloys Compd. 455(1), 35 (2008).Google Scholar
  46. 46.
    N. Bouchaala, M. Jemmali, T. Bartoli, K. Nouri, I. Hentech, S. Walha, L. Bessais, and A. BenSalah, J. Solid State Chem. 258, 501 (2018).Google Scholar
  47. 47.
    Y.M. Hao, B. Fu, Y. Zhou, and M. Zhao, Chin. Phys. Lett. 26, 077501 (2009).Google Scholar
  48. 48.
    G.J. Long, O.A. Pringle, F. Grandjean, and K.H.J. Buschow, J. Appl. Phys. 72, 4845 (1992).Google Scholar
  49. 49.
    A.G. Kuchin, A.N. Pirogov, V.I. Khrabrov, A.E. Teplykh, A.S. Ermolenko, and E.V. Belozerov, J. Alloys Compd. 313, 7 (2000).Google Scholar
  50. 50.
    G.J. Long and O.A. Pringle, J. Appl. Phys. 74, 504 (1993).Google Scholar
  51. 51.
    Y.M. Hao, F.W. Wang, P.L. Zhang, X.D. Sun, and Q.W. Yan, J. Phys. Condens. Matter 11, 6113 (1999)Google Scholar
  52. 52.
    Y.V. Shcherbakova, G.V. Ivanova, N.V. Mushnikov, and I.V. Gervasieva, J. Alloys Compd. 308, 15 (2000).Google Scholar
  53. 53.
    K. Nouri, T. Bartoli, A. Chrobak, J. Moscovici, and L. Bessais, J. Electron. Mater. 47, 3836 (2018).Google Scholar
  54. 54.
    G. Pokharel, K.S. Syed Ali, and S.R. Mishra, J. Magn. Magn. Mater. 382, 31 (2015)Google Scholar
  55. 55.
    X. Yan, J. Liang, and S. Xie, Phys. Status Solidi (a) 134, 77 (1992).Google Scholar
  56. 56.
    L. Bessais, K. Younsi, S. Khazzan, and N. Mliki, Intermetallics 19, 997 (2011).Google Scholar
  57. 57.
    L. Néel, J. Phys. Radium 9, 148 (1948).Google Scholar
  58. 58.
    A.M. Tishin and Y.I. Spichkin, The Magnetocaloric Effect and Its Applications (Bristol: CRC Press, 2003), p. 476Google Scholar
  59. 59.
    M. Foldeaki, R. Chahine, and T.K. Bose, J. Appl. Phys. 77, 3528 (1995).Google Scholar
  60. 60.
    V.K. Pecharsky and K.A. Gschneidner, J. Appl. Phys. 86, 565 (1999).Google Scholar
  61. 61.
    J. Inoue and M. Shimizu, J. Phys. F 12, 1811 (1982).Google Scholar
  62. 62.
    P.E. Brommer, Phys. B 154, 197 (1989).Google Scholar
  63. 63.
    H. Liu, D. Wang, S. Tang, Q. Cao, T. Tang, B. Gu, and Y. Du, J. Alloys Compd. 346, 314 (2002).Google Scholar
  64. 64.
    X.B. Liu and Z. Altounian, J. Magn. Magn. Mater. 292, 83 (2005).Google Scholar
  65. 65.
    E. Koch and W. Fischer, Z. Kristallogr. 211, 251 (1996).Google Scholar
  66. 66.
    M. Forker, A. Julius, M. Schulte, and D. Best, Phys. Rev. B 57, 11565 (1998).Google Scholar
  67. 67.
    E. Burzo, Rep. Prog. Phys. 61, 1099 (1998).Google Scholar
  68. 68.
    L. Bessais, C. Djega-Mariadassou, and E. Koch, J. Phys. Condens. Matter 14, 8111 (2002).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • M. Saidi
    • 1
    • 2
  • K. Nouri
    • 1
    • 2
    Email author
  • S. Walha
    • 2
  • E. Dhahri
    • 3
  • A. Kabadou
    • 2
  • M. Jemmali
    • 2
    • 4
  • L. Bessais
    • 1
  1. 1.ICMPE (UMR 7182), CNRS, UPECUniversité Paris EstThiaisFrance
  2. 2.Laboratoire des Sciences des Matériaux et de l’Environnement, Faculté des Sciences de SfaxUniversité de SfaxSfaxTunisia
  3. 3.Laboratoire de Physique Appliquée, Faculté des Sciences de SfaxUniversité de SfaxSfaxTunisia
  4. 4.Chemistry Department, College of Science and Arts at Ar-RassQassim UniversityBuraydahSaudi Arabia

Personalised recommendations