Analysis of Bi-Te Based Thermoelectric Modules Connected to Square Series–Parallel Configuration with Isolated Power Electronics Converter for DC Micro-grid Applications

  • Rakesh Thankakan
  • Edward Rajan Samuel NadarEmail author
Topical Collection: Progress and Challenges for Emerging Integrated Energy Modules
Part of the following topical collections:
  1. Progress and Challenges for Emerging Integrated Energy Modules


This research paper offers a thermoelectric energy harvesting system that makes use of the heat generated within the stator windings of a wind generator in the operation of a 1.25 MW wind turbine. A single thermoelectric generator can generate only lower power. To deliver higher output power, the Bi-Te based thermoelectric modules (TEMs) may be associated as an array. The square series–parallel configuration is adopted in this work owing to the advantage of unaffected internal resistance value for any quantity of TEMs. The power generated by the TEMs is unsteady owing to irregular wind velocity. Therefore, a power converter is desired before the load. The proposed energy harvesting system makes use of an isolated converter that has the benefits of better efficiency, higher voltage gain, and ability for supplying a DC micro-grid system. Furthermore, a maximum power point tracking (MPPT) is required, since no matching exists between the total internal resistance of modules and load resistance. In this work, the incremental conductance MPPT technique is used to track the maximum power at every instant of time. The performance of the proposed isolated converter has been compared with other similar converters and the results obtained are tabulated to prove the effectiveness. From the acquired experimental results, it is observed that the proposed system produces a voltage gain of 29, steadier output power during the dynamics of load and efficiency of 91.35% at a wind velocity of 12.9 m/s.


Thermoelectric generator isolated power converter energy harvesting square series–parallel configuration maximum power point tracking incremental conductance method 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors would like to thank the Management and Principal of Mepco Schlenk Engineering College (Autonomous), Sivakasi, Tamil Nadu, India for providing us the state-of-art facilities to carry out our research work in the Mepco Research Centre in collaboration with Anna University Chennai, Tamil Nadu, India.


  1. 1.
    S. LeBlanc, Sustain. Mater. Technol. 1–2, 26 (2014).Google Scholar
  2. 2.
    A. Dewan, S.U. Ay, M. Nazmul Karim, and H. Beyenal, J. Power Sources 245, 129 (2014).CrossRefGoogle Scholar
  3. 3.
    D. Champier, J. Bédécarrats, T. Kousksou, M. Rivaletto, F. Strub, and P. Pignolet, Energy 36, 1518 (2011).CrossRefGoogle Scholar
  4. 4.
    S.M. O’Shaughnessy, M.J. Deasy, C.E. Kinsella, J.V. Doyle, and A.J. Robinson, Appl. Energy 120, 374 (2013).CrossRefGoogle Scholar
  5. 5.
    M. Li, S. Xu, Q. Chen, and L. Zheng, J. Electron. Mater. 40, 1136 (2011).CrossRefGoogle Scholar
  6. 6.
    X. Liu, Y.D. Deng, Z. Li, and C.Q. Su, Energy Convers. Manag. 90, 121 (2015).CrossRefGoogle Scholar
  7. 7.
    B. Orr, A. Akbarzadeh, M. Mochizuki, and R. Singh, Appl. Therm. Eng. 101, 490 (2016).CrossRefGoogle Scholar
  8. 8.
    W.G.J.H.M. Van Sark, Appl. Energy 88, 2785 (2011).CrossRefGoogle Scholar
  9. 9.
    J. Xiao, T. Yang, P. Li, P. Zhai, and Q. Zhang, Appl. Energy 93, 33 (2012).CrossRefGoogle Scholar
  10. 10.
    K. Qiu and A.C.S. Hayden, Appl. Energy 91, 304 (2012).CrossRefGoogle Scholar
  11. 11.
    M. Chen, L.A. Rosendahl, T.J. Condra, and J.K. Pedersen, IEEE Trans. Energy Convers. 24, 112 (2009).CrossRefGoogle Scholar
  12. 12.
    T. Kyono, R.O. Suzuki, and K. Ono, IEEE Trans. Energy Convers. 18, 330 (2003).CrossRefGoogle Scholar
  13. 13.
    M. Gao and D.M. Rowe, IEEE Trans. Energy Convers. 22, 528 (2007).CrossRefGoogle Scholar
  14. 14.
    J. Yu and H. Zhao, J. Power Sources 172, 428 (2007).CrossRefGoogle Scholar
  15. 15.
    S. Bensaid, M. Brignone, A. Ziggiotti, and S. Specchia, Int. J. Hydrog. Energy 37, 1385 (2012).CrossRefGoogle Scholar
  16. 16.
    M. Andrea, S. Jonathan, and R.K. Andrew, Appl. Energy 123, 47 (2014).CrossRefGoogle Scholar
  17. 17.
    A. Vargas-Almeida, M.A. Olivares-Robles, and P. Camacho-Medina, Entropy 15, 2162 (2013).CrossRefGoogle Scholar
  18. 18.
    T. Rakesh and S. Edward Rajan, Int. J. Energy Res. 42, 2290 (2018).CrossRefGoogle Scholar
  19. 19.
    S. Oucheriah, Int. J. Electron. 104, 1810 (2017).CrossRefGoogle Scholar
  20. 20.
    F.J. Lesage and N. Pagé-Potvin, Energy Convers. Manag. 66, 98 (2013).CrossRefGoogle Scholar
  21. 21.
    I. Laird, H. Lovatt, N. Savvides, D. Lu, and V.G. Agelidis, in IEEE Conference Proceedings (2008), pp. 1–6.Google Scholar
  22. 22.
    N. Fernia, G. Petrone, G. Spagnuolo, and M. Vitelli, IEEE Trans. Power Electron. 20, 963 (2005).CrossRefGoogle Scholar
  23. 23.
    N. Kasa, T. Iida, and L. Chen, IEEE Trans. Ind. Electron. 52, 1145 (2005).CrossRefGoogle Scholar
  24. 24.
    J. Eakburanawat and I. Boonyaroonate, Appl. Energy 83, 687 (2006).CrossRefGoogle Scholar
  25. 25.
    S. Twaha, J. Zhu, Y. Yan, B. Li, and K. Huang, Energy Sustain. Dev. 37, 86 (2017).CrossRefGoogle Scholar
  26. 26.
    J. Gao, K. Sun, L. Ni, M. Chen, Z. Kang, L. Zhang, Y. Xing, and J. Zhang, J. Electron. Mater. 41, 1043 (2012).CrossRefGoogle Scholar
  27. 27.
    K. Sun, L. Ni, M. Chen, H. Wu, Y. Xing, and L. Rosendahl, J. Electron. Mater. 42, 2157 (2013).CrossRefGoogle Scholar
  28. 28.
    A. Kwasinski and C. Onwuchekwa, IEEE Trans. Power Electron. 26, 822 (2011).CrossRefGoogle Scholar
  29. 29.
    L. Chen, D. Cao, Y. Huang, and F.Z. Peng, in IEEE Conference Proceedings (2008), pp. 1098–1103.Google Scholar
  30. 30.
    R. Bonin, D. Boero, M. Chiaberge, and A. Tonoli, Energy Convers. Manag. 73, 340 (2013).CrossRefGoogle Scholar
  31. 31.
    G.J. Snyder and E.S. Toberer, Nat. Mater. 7, 105 (2008).CrossRefGoogle Scholar
  32. 32.
    R.J. Wai and R.Y. Duan, IEEE Trans. Power Electr. 20, 1025 (2005).CrossRefGoogle Scholar
  33. 33.
    S.K. Changchien, T.J. Liang, J.F. Chen, and L.S. Yang, IET Power Electron. 3, 369 (2010).CrossRefGoogle Scholar
  34. 34.
    R. Gules, W.M. Santos, F.A. Reis, E.F.R. Romaneli, and A.A. Badin, IEEE Trans. Power Electron. 29, 5860 (2014).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Department of Electrical and Electronics EngineeringMepco Schlenk Engineering College (Autonomous)SivakasiIndia

Personalised recommendations