Analysis of Bi-Te Based Thermoelectric Modules Connected to Square Series–Parallel Configuration with Isolated Power Electronics Converter for DC Micro-grid Applications
- 1 Downloads
Abstract
This research paper offers a thermoelectric energy harvesting system that makes use of the heat generated within the stator windings of a wind generator in the operation of a 1.25 MW wind turbine. A single thermoelectric generator can generate only lower power. To deliver higher output power, the Bi-Te based thermoelectric modules (TEMs) may be associated as an array. The square series–parallel configuration is adopted in this work owing to the advantage of unaffected internal resistance value for any quantity of TEMs. The power generated by the TEMs is unsteady owing to irregular wind velocity. Therefore, a power converter is desired before the load. The proposed energy harvesting system makes use of an isolated converter that has the benefits of better efficiency, higher voltage gain, and ability for supplying a DC micro-grid system. Furthermore, a maximum power point tracking (MPPT) is required, since no matching exists between the total internal resistance of modules and load resistance. In this work, the incremental conductance MPPT technique is used to track the maximum power at every instant of time. The performance of the proposed isolated converter has been compared with other similar converters and the results obtained are tabulated to prove the effectiveness. From the acquired experimental results, it is observed that the proposed system produces a voltage gain of 29, steadier output power during the dynamics of load and efficiency of 91.35% at a wind velocity of 12.9 m/s.
Keywords
Thermoelectric generator isolated power converter energy harvesting square series–parallel configuration maximum power point tracking incremental conductance methodPreview
Unable to display preview. Download preview PDF.
Notes
Acknowledgments
The authors would like to thank the Management and Principal of Mepco Schlenk Engineering College (Autonomous), Sivakasi, Tamil Nadu, India for providing us the state-of-art facilities to carry out our research work in the Mepco Research Centre in collaboration with Anna University Chennai, Tamil Nadu, India.
References
- 1.S. LeBlanc, Sustain. Mater. Technol. 1–2, 26 (2014).Google Scholar
- 2.A. Dewan, S.U. Ay, M. Nazmul Karim, and H. Beyenal, J. Power Sources 245, 129 (2014).CrossRefGoogle Scholar
- 3.D. Champier, J. Bédécarrats, T. Kousksou, M. Rivaletto, F. Strub, and P. Pignolet, Energy 36, 1518 (2011).CrossRefGoogle Scholar
- 4.S.M. O’Shaughnessy, M.J. Deasy, C.E. Kinsella, J.V. Doyle, and A.J. Robinson, Appl. Energy 120, 374 (2013).CrossRefGoogle Scholar
- 5.M. Li, S. Xu, Q. Chen, and L. Zheng, J. Electron. Mater. 40, 1136 (2011).CrossRefGoogle Scholar
- 6.X. Liu, Y.D. Deng, Z. Li, and C.Q. Su, Energy Convers. Manag. 90, 121 (2015).CrossRefGoogle Scholar
- 7.B. Orr, A. Akbarzadeh, M. Mochizuki, and R. Singh, Appl. Therm. Eng. 101, 490 (2016).CrossRefGoogle Scholar
- 8.W.G.J.H.M. Van Sark, Appl. Energy 88, 2785 (2011).CrossRefGoogle Scholar
- 9.J. Xiao, T. Yang, P. Li, P. Zhai, and Q. Zhang, Appl. Energy 93, 33 (2012).CrossRefGoogle Scholar
- 10.K. Qiu and A.C.S. Hayden, Appl. Energy 91, 304 (2012).CrossRefGoogle Scholar
- 11.M. Chen, L.A. Rosendahl, T.J. Condra, and J.K. Pedersen, IEEE Trans. Energy Convers. 24, 112 (2009).CrossRefGoogle Scholar
- 12.T. Kyono, R.O. Suzuki, and K. Ono, IEEE Trans. Energy Convers. 18, 330 (2003).CrossRefGoogle Scholar
- 13.M. Gao and D.M. Rowe, IEEE Trans. Energy Convers. 22, 528 (2007).CrossRefGoogle Scholar
- 14.J. Yu and H. Zhao, J. Power Sources 172, 428 (2007).CrossRefGoogle Scholar
- 15.S. Bensaid, M. Brignone, A. Ziggiotti, and S. Specchia, Int. J. Hydrog. Energy 37, 1385 (2012).CrossRefGoogle Scholar
- 16.M. Andrea, S. Jonathan, and R.K. Andrew, Appl. Energy 123, 47 (2014).CrossRefGoogle Scholar
- 17.A. Vargas-Almeida, M.A. Olivares-Robles, and P. Camacho-Medina, Entropy 15, 2162 (2013).CrossRefGoogle Scholar
- 18.T. Rakesh and S. Edward Rajan, Int. J. Energy Res. 42, 2290 (2018).CrossRefGoogle Scholar
- 19.S. Oucheriah, Int. J. Electron. 104, 1810 (2017).CrossRefGoogle Scholar
- 20.F.J. Lesage and N. Pagé-Potvin, Energy Convers. Manag. 66, 98 (2013).CrossRefGoogle Scholar
- 21.I. Laird, H. Lovatt, N. Savvides, D. Lu, and V.G. Agelidis, in IEEE Conference Proceedings (2008), pp. 1–6.Google Scholar
- 22.N. Fernia, G. Petrone, G. Spagnuolo, and M. Vitelli, IEEE Trans. Power Electron. 20, 963 (2005).CrossRefGoogle Scholar
- 23.N. Kasa, T. Iida, and L. Chen, IEEE Trans. Ind. Electron. 52, 1145 (2005).CrossRefGoogle Scholar
- 24.J. Eakburanawat and I. Boonyaroonate, Appl. Energy 83, 687 (2006).CrossRefGoogle Scholar
- 25.S. Twaha, J. Zhu, Y. Yan, B. Li, and K. Huang, Energy Sustain. Dev. 37, 86 (2017).CrossRefGoogle Scholar
- 26.J. Gao, K. Sun, L. Ni, M. Chen, Z. Kang, L. Zhang, Y. Xing, and J. Zhang, J. Electron. Mater. 41, 1043 (2012).CrossRefGoogle Scholar
- 27.K. Sun, L. Ni, M. Chen, H. Wu, Y. Xing, and L. Rosendahl, J. Electron. Mater. 42, 2157 (2013).CrossRefGoogle Scholar
- 28.A. Kwasinski and C. Onwuchekwa, IEEE Trans. Power Electron. 26, 822 (2011).CrossRefGoogle Scholar
- 29.L. Chen, D. Cao, Y. Huang, and F.Z. Peng, in IEEE Conference Proceedings (2008), pp. 1098–1103.Google Scholar
- 30.R. Bonin, D. Boero, M. Chiaberge, and A. Tonoli, Energy Convers. Manag. 73, 340 (2013).CrossRefGoogle Scholar
- 31.G.J. Snyder and E.S. Toberer, Nat. Mater. 7, 105 (2008).CrossRefGoogle Scholar
- 32.R.J. Wai and R.Y. Duan, IEEE Trans. Power Electr. 20, 1025 (2005).CrossRefGoogle Scholar
- 33.S.K. Changchien, T.J. Liang, J.F. Chen, and L.S. Yang, IET Power Electron. 3, 369 (2010).CrossRefGoogle Scholar
- 34.R. Gules, W.M. Santos, F.A. Reis, E.F.R. Romaneli, and A.A. Badin, IEEE Trans. Power Electron. 29, 5860 (2014).CrossRefGoogle Scholar