Advertisement

Effect of Polypyrrole Coating on Lithium Storage for Hollow Sb Microspheres

  • Weijia Meng
  • Meiqing GuoEmail author
  • Liyu Cheng
  • Zhongchao Bai
  • Fuqian YangEmail author
Article
  • 3 Downloads

Abstract

In this work, we synthesize hollow Sb microspheres (Sb HMSs) coated with polypyrrole (PPy) film (PPy@Sb HMSs) via a replacement reaction and ultrasound-assisted chemical polymerization. Using the synthesized PPy@Sb HMSs as electrode material in lithium-ion battery (LIB) cells, we study the electrochemical performance of the LIB cells. The LIB cells with PPy-20@Sb HMSs as the active material in the working electrode deliver a higher reversible capacity of 418.3 mAh g−1 after 100 cycles than 305.4 mAh g−1 of the LIB cells with Sb HMSs as the active material in the working electrode after 70 cycles at a current density of 0.1 A g−1, while the reversible capacity of the LIB cells with PPy-25@Sb HMSs as the active material in the working electrode is smaller than that of the LIB cells with Sb HMSs as the active material in the working electrode under the same cycling conditions. PPy coating on Sb HMSs can improve the cycling stability of Sb HMSs since PPy functions as a barrier to ensure the formation of a stable layer of solid electrolyte interphase; PPy coating of a large amount on Sb HMSs causes the decrease of specific capacitance due to smaller specific capacitance of PPy than Sb.

Keywords

Sb microsphere PPy coating anode lithium ion battery 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was supported by National Natural Science Foundation of China [Grant Numbers 51301117, 11502158, 51671140]; the International Cooperation Project Foundation of Shanxi Province China [Grant Numbers 201603D421037, 201703D421019 and 2015081053]; the Shanxi Provincial Foundation for Leaders of Disciplines in Science, China; the Top Young Academic Leaders of Shanxi and the ‘‘1331 project’’ Key Innovation Teams of Shanxi Province; the Higher School Science and Technology Innovation Project Foundation of Shanxi Province China [Grant Number 2016128]; and the Research Project Supported by Shanxi Scholarship Council of China [Grant Number 2015-034]. FY is grateful for the support by the NSF through the Grant CMMI-1634540, monitored by Dr. Khershed Cooper.

Conflict of Interest

The authors declare that there is no conflict of interest.

References

  1. 1.
    S. Wang, L. Shang, Z. Li, H. Deng, and Y. Ma, Int. J. Electrochem. Sci. 5130, 10 (2015).Google Scholar
  2. 2.
    Y.N. Ko and Y.C. Kang, Chem. Commun. 12322, 50 (2014).Google Scholar
  3. 3.
    M. Armand and J.M. Tarascon, Nature 652, 451 (2008).Google Scholar
  4. 4.
    P.G. Bruce, B. Scrosati, and J.M. Tarascon, Angew. Chem. Int. Ed. 2930, 47 (2008).Google Scholar
  5. 5.
    J.B. Goodenough and Y. Kim, Chem. Mater. 587, 22 (2010).Google Scholar
  6. 6.
    N. Wang, Z. Bai, Y. Qian, and J. Yang, Adv. Mater. 4126, 28 (2016).Google Scholar
  7. 7.
    G. Jeong, Y.U. Kim, H. Kim, Y.J. Kim, and H.J. Sohn, Energy Environ. Sci. 1986, 4 (2011).Google Scholar
  8. 8.
    Y.L. Ding, C. Wu, P. Kopold, P.A. van Aken, J. Maier, and Y. Yu, Small 6026, 11 (2016).Google Scholar
  9. 9.
    L. Liang, Y. Xu, C. Wang, L. Wen, Y. Fang, Y. Mi, M. Zhou, H. Zhao, and Y. Lei, Energy Environ. Sci. 2954, 8 (2015).Google Scholar
  10. 10.
    J. Pan, N. Wang, Y. Zhou, X. Yang, W. Zhou, and J. Yang, Nano Res. 1, 10 (2017).Google Scholar
  11. 11.
    H. Hou, M. Jing, Y. Yang, Y. Zhang, Y. Zhu, W. Song, X. Yang, and X. Ji, J. Mater. Chem. A 2971, 3 (2015).Google Scholar
  12. 12.
    M.H. Park, K. Kim, J. Kim, and J. Cho, Adv. Mater. 415, 22 (2010).Google Scholar
  13. 13.
    P. Zhang, C. Zhang, A. Xie, C. Li, J. Song, and Y. Shen, J. Mater. Sci. 3448, 51 (2016).Google Scholar
  14. 14.
    S.C. Chao, Y.F. Song, C.C. Wang, H.S. Sheu, H.C. Wu, and N.L. Wu, J. Phys. Chem. C 22040, 115 (2016).Google Scholar
  15. 15.
    W. Ke, X. He, J. Ren, W. Li, C. Jiang, and C. Wan, Electrochim. Acta 1221, 52 (2007).Google Scholar
  16. 16.
    L. Fan, Y. Liu, A.G. Tamirat, Y. Wang, and Y.Y. Xia, New J. Chem. 13060, 41 (2017).Google Scholar
  17. 17.
    S. Sengupta, A. Patra, M. Akhtar, K. Das, S.B. Majumder, and S. Das, J. Alloys Compd. 290, 705 (2017).Google Scholar
  18. 18.
    L. Wu, X. Hu, J. Qian, F. Pei, F. Wu, R. Mao, X. Ai, H. Yang, and Y. Cao, Energy Environ. Sci. 323, 7 (2014).Google Scholar
  19. 19.
    Z. Liu, X.Y. Yu, X.W. Lou, and U. Paik, Energy Environ. Sci. 2314, 9 (2016).Google Scholar
  20. 20.
    X. Zhang, P. Li, R. Zang, S. Wang, Y. Zhu, C. Li, and G. Wang, Chem-Asian J. 116, 12 (2017).Google Scholar
  21. 21.
    H. Li, L. Shi, Q. Wang, L. Chen, and X. Huang, Solid State Ion. 247, 33 (2002).Google Scholar
  22. 22.
    H. Wu, G. Chan, J.W. Choi, I. Ryu, Y. Yao, M.T. Mcdowell, S.W. Lee, A. Jackson, Y. Yang, and L. Hu, Nat. Nanotechnol. 310, 7 (2012).Google Scholar
  23. 23.
    H. Li and H. Zhou, Chem. Commun. 1201, 48 (2012).Google Scholar
  24. 24.
    L. Feng, Y. Zhang, R. Wang, Y. Zhang, W. Bai, S. Ji, Z. Xuan, J. Yang, Z. Zheng, and H. Guan, Nanoscale Res. Lett. 518, 12 (2017).Google Scholar
  25. 25.
    S. Sim, P. Oh, S. Park, and J. Cho, Adv. Mater. 4498, 25 (2013).Google Scholar
  26. 26.
    D. Wang, J. Yang, J. Liu, X. Li, R. Li, M. Cai, T.K. Sham, and X. Sun, J. Mater. Chem. A 2306, 2 (2014).Google Scholar
  27. 27.
    R. Liu, D. Li, C. Wang, N. Li, Q. Li, X. Lü, J.S. Spendelow, and G. Wu, Nano Energy 73, 6 (2014).Google Scholar
  28. 28.
    J. Yuan, C. Chen, Y. Hao, X. Zhang, B. Zou, R. Agrawal, C. Wang, H. Yu, X. Zhu, Y. Yu, Z. Xiong, Y. Luo, H. Li, and Y. Xie, J. Alloys Compd. 34, 691 (2017).Google Scholar
  29. 29.
    Z. Cao, H. Yang, P. Dou, C. Wang, J. Zheng, and X. Xu, Electrochim. Acta 700, 209 (2016).Google Scholar
  30. 30.
    C.L. Huang and E. Matijevic, J. Mater. Res. 1327, 10 (1995).Google Scholar
  31. 31.
    M. Omastová, M. Trchová, J. Kovářová, and J. Stejskal, Synth. Met. 447, 138 (2003).Google Scholar
  32. 32.
    T. Hasan, P. Singh, K. Singhal, P. Raj, and N. Misra, Pramana J. Phys. 69, 675–680 (2007).Google Scholar
  33. 33.
    Y. Lu, Z. Wen, J. Jin, Y. Cui, M. Wu, and S. Sun, J. Solid State Electr. 1863, 16 (2012).Google Scholar
  34. 34.
    Z. Bai, N. Fan, C. Sun, Z. Ju, C. Guo, J. Yang, and Y. Qian, Nanoscale 2442, 5 (2013).Google Scholar
  35. 35.
    W.X. Chen, J.Y. Lee, and Z. Liu, Carbon 959, 41 (2003).Google Scholar
  36. 36.
    H. Hou, M. Jing, Y. Yang, Y. Zhu, L. Fang, W. Song, C. Pan, X. Yang, and X. Ji, A.C.S. Appl Mater. Interfaces 16189, 6 (2014).Google Scholar
  37. 37.
    X. Fan, P. Dou, A. Jiang, D. Ma, and X. Xu, A.C.S. Appl Mater. Interfaces 22282, 6 (2014).Google Scholar
  38. 38.
    X. Liu, C. Niu, J. Meng, X. Xu, X. Wang, B. Wen, R. Guo and L. Mai, J. Mater. Chem. A 14095, 4 (2016).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Institute of Applied Mechanics, College of Mechanical and Vehicle EngineeringTaiyuan University of TechnologyTaiyuanChina
  2. 2.Shanxi Key Laboratory of Material Strength and Structural Impact, College of Mechanical and Vehicle EngineeringTaiyuan University of TechnologyTaiyuanChina
  3. 3.National Demonstration Center for Experimental Mechanics EducationTaiyuan University of TechnologyTaiyuanChina
  4. 4.Materials Program, Department of Chemical and Materials EngineeringUniversity of KentuckyLexingtonUSA
  5. 5.College of Materials Science and EngineeringTaiyuan University of TechnologyTaiyuanChina

Personalised recommendations