Optical and Ferromagnetic Properties of Ni-Doped CdTeSe Quantum Dots

  • N. X. Ca
  • N. T. Hien
  • P. N. Loan
  • P. M. Tan
  • U. T. D. Thuy
  • T. L. Phan
  • Q. B. NguyenEmail author


A chemical method was used to prepare Cd1−xNixTe0.5Se0.5 (Cd1−xNixTeSe, x = 0–0.1) quantum dots (QDs) with particle sizes of 3–4 nm. Structural analyses of x-ray diffraction patterns indicate that all QDs are single-phase and crystallize in the zincblende-type structure. The lattice constant gradually decreases with increasing x in Cd1−xNixTeSe. This is due to a partial replacement of Ni (a smaller ion) for Cd2+ (a larger ion). Our study also indicates that the Ni doping causes the red shift of the longitudinal optical mode, the blue shift of the excitonic absorption edge and photoluminescence (PL) peak, and a gradual decrease of the PL quantum yield. When the excitation power increases, the PL peak of CdTeSe (x = 0) is almost unchanged, while that of Cd1−xNixTeSe QDs (x > 0) shifts linearly towards high energies, which is related to the state-filling effect caused by Ni2+ dopants. Comparing with pure CdTeSe, Ni-doped QDs have longer PL decay times, up to ∼ 580 ns. Particularly, all QDs exhibit weak ferromagnetic (FM) order at room temperature generated from defect-mediated exchange interactions of Ni2+ ions. Such results proved ternary Cd1−xNixTeSe QDs having simultaneously the optical and FM properties. Together with very long decay times, they are considered as potential materials for biosensing, photovoltaic and photocatalytic applications.


CdTeSe quantum dots optical and magnetic properties  Ni-doping state filling effect 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This research is funded by the Vietnam National Foundation for Science and Technology Development (NAFOSTED) under Grant Number 103.02-2017.350.

Supplementary material

11664_2019_7017_MOESM1_ESM.pdf (198 kb)
Supplementary material 1 (PDF 198 kb)


  1. 1.
    C. de Mello Donega, Chem. Soc. Rev. 40, 1512 (2011).CrossRefGoogle Scholar
  2. 2.
    T.L. Phan and S.C. Yu, J. Phys. Chem. C 117, 6443 (2013).CrossRefGoogle Scholar
  3. 3.
    N.X. Ca, V.T.K. Lien, N.X. Nghia, T.T.K. Chi, and T.L. Phan, Nanotechnology 26, 445701 (2015).CrossRefGoogle Scholar
  4. 4.
    S. Verma, S. Kaniyankandy, and H.N. Ghosh, J. Phys. Chem. C 117, 10901 (2013).CrossRefGoogle Scholar
  5. 5.
    Z. Han, L. Ren, L. Chen, M. Luo, H. Pan, C. Li, and J. Chen, J. Alloys Compd. 699, 216 (2017).CrossRefGoogle Scholar
  6. 6.
    H. Xu, L. Zhu, J. Jiang, H. Cai, W. Chen, L. Hu, Y. Guo, and Z. Ye, J. Appl. Phys. 114, 083522 (2013).CrossRefGoogle Scholar
  7. 7.
    J.U. Kim, M.H. Lee, and H. Yang, Nanotechnology 19, 465605 (2008).CrossRefGoogle Scholar
  8. 8.
    A. Nag, S. Chakraborty, and D.D. Sarma, J. Am. Chem. Soc. 130, 10605 (2008).CrossRefGoogle Scholar
  9. 9.
    W. Xu, X. Meng, W. Ji, P. Jing, J. Zheng, X. Liu, J. Zhao, and H. Li, Chem. Phys. Lett. 532, 72 (2012).CrossRefGoogle Scholar
  10. 10.
    S.K. Verma, R. Verma, N. Li, D. Xiong, S. Tian, W. Xiang, Z. Zhang, and Y. Xie, Sol. Energy Mater. Sol. Cells 157, 161 (2016).CrossRefGoogle Scholar
  11. 11.
    M. Thambidurai, N. Muthukumarasamy, S. Agilan, N. Murugan, N. Sabari Arul, S. Vasantha, and R. Balasundaraprabhu, Solid State Sci. 12, 1554 (2010).CrossRefGoogle Scholar
  12. 12.
    R. Sathyamoorthy, P. Sudhagar, A. Balerna, C. Balasubramanian, S. Bellucci, A.I. Popov, and K. Asokan, J. Alloys Compd. 493, 240 (2010).CrossRefGoogle Scholar
  13. 13.
    J. Singh, S. Kumar, and N.K. Verma, J. Mater. Sci. Mater. Electron. 25, 2267 (2014).CrossRefGoogle Scholar
  14. 14.
    P. Parayanthal and F.H. Pollak, Phys. Rev. Lett. 52, 1822 (1984).CrossRefGoogle Scholar
  15. 15.
    B.T. Spann and X. Xu, Appl. Phys. Lett. 105, 083111 (2014).CrossRefGoogle Scholar
  16. 16.
    Y.M. Azhniuk, M.V. Prymak, V.V. Lopushansky, A.V. Gomonnai, and D.R.T. Zahn, Phys. Status Solidi B 251, 669 (2014).CrossRefGoogle Scholar
  17. 17.
    S. Gul, J.K. Cooper, C. Corrado, B. Vollbrecht, F. Bridges, J. Guo, and J.Z. Zhang, J. Phys. Chem. C 115, 20864 (2011).CrossRefGoogle Scholar
  18. 18.
    T.L. Phan, T.A. Ho, N.T. Dang, M.C. Nguyen, and V.D. Dao, J. Phys. D Appl. Phys. 50, 295002 (2017).CrossRefGoogle Scholar
  19. 19.
    R. Viswanatha, S. Sapra, S.S. Gupta, B. Satpati, P.V. Satyam, B.N. Dev, and D.D. Sarma, J. Phys. Chem. B 108, 6303 (2004).CrossRefGoogle Scholar
  20. 20.
    C.E. Kim, P. Moon, S. Kim, J.M. Myoung, H.W. Jang, J. Bang, and I. Yun, Thin Solid Films 518, 6304 (2010).CrossRefGoogle Scholar
  21. 21.
    V. Privman, Nonequilibrium Statistical Mechanics in One Dimension (Cambridge: Cambridge University, 1997).CrossRefGoogle Scholar
  22. 22.
    V.I. Klimov, S.A. Ivanov, J. Nanda, M. Achermann, I. Bezel, J.A. McGuire, and A. Piryatinski, Nat. Commun. 447, 441 (2007).CrossRefGoogle Scholar
  23. 23.
    D.P. Halliday, J.M. Eggleston, and K. Durose, J. Cryst. Growth. 186, 543 (1998).CrossRefGoogle Scholar
  24. 24.
    F. Luckert, M.V. Yakushev, C. Faugeras, A.V. Karotki, A.V. Mudryi, and R.W. Martin, J. Appl. Phys. 111, 093507 (2012).CrossRefGoogle Scholar
  25. 25.
    J. Singh, Physics of Semiconductors and Their Heterostructures (Singapore: McGraw-Hill, 1993).Google Scholar
  26. 26.
    C.H. Wang, T.T. Chen, K.W. Tan, Y.F. Chen, C.T. Cheng, and P.T. Chou, J. Appl. Phys. 99, 123521 (2006).CrossRefGoogle Scholar
  27. 27.
    J.M. Iannelli, I. Maserjian, B.R. Hancock, P.O. Andersson, and F.J. Grunthaner, Appl. Phys. Lett. 54, 301 (1989).CrossRefGoogle Scholar
  28. 28.
    G. Morello, A. Fiore, R. Mastria, A. Falqui, A. Genovese, A. Cretì, M. Lomascolo, I.R. Franchini, L. Manna, F.D. Sala, R. Cingolani, and M. De Giorgi, J. Phys. Chem. C 115, 18094 (2011).CrossRefGoogle Scholar
  29. 29.
    J.M.D. Coey, Solid State Sci. 7, 660 (2005).CrossRefGoogle Scholar
  30. 30.
    T.L. Phan, Y.D. Zhang, D.S. Yang, N.X. Nghia, T.D. Thanh, and S.C. Yu, Appl. Phys. Lett. 102, 072408 (2013).CrossRefGoogle Scholar
  31. 31.
    S. Kumar, N. Kumari, S. Kumar, S. Jain, and N.K. Verma, Appl. Nanosci. 2, 437 (2012).CrossRefGoogle Scholar
  32. 32.
    N.H. Patel, M.P. Deshpande, and S.H. Chaki, Mater. Sci. Semicond. Process. 31, 272 (2015).CrossRefGoogle Scholar
  33. 33.
    S. Kumar, C.L. Chen, C.L. Dong, Y.K. Ho, J.F. Lee, T.S. Chan, R. Thangavel, T.K. Chen, B.H. Mok, S.M. Rao, and M.K. Wu, J. Alloys Compd. 554, 357 (2013).CrossRefGoogle Scholar
  34. 34.
    O. Sahin and S. Horoz, J. Mater. Sci. Mater. Electron. 29, 16775 (2018).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • N. X. Ca
    • 1
  • N. T. Hien
    • 1
  • P. N. Loan
    • 1
  • P. M. Tan
    • 2
  • U. T. D. Thuy
    • 3
  • T. L. Phan
    • 4
  • Q. B. Nguyen
    • 5
    Email author
  1. 1.Faculty of Physics and TechnologyThai Nguyen University of ScienceThai NguyenViet Nam
  2. 2.Faculty of Fundamental SciencesThai Nguyen University of TechnologyThai NguyenViet Nam
  3. 3.Institute of Materials ScienceVietnam Academy of Science and TechnologyHanoiViet Nam
  4. 4.Department of PhysicsHankuk University of Foreign StudiesYonginSouth Korea
  5. 5.Institute of Research and DevelopmentDuy Tan UniversityDa NangViet Nam

Personalised recommendations