Incorporation of Carbon in Free-Standing HVPE-Grown GaN Substrates

  • M. E. ZvanutEmail author
  • Subash Paudel
  • E. R. Glaser
  • M. Iwinska
  • T. Sochacki
  • M. Bockowski


Carbon doping is a viable approach for compensating the unintentional donors in GaN and achieving semi-insulating substrates necessary for high-frequency, high-power devices. In this work, bulk material properties and point defects are studied in mm-thick free-standing carbon-doped GaN to understand the efficacy of the carbon dopant. Temperature-dependent Hall measurements reveal high resistivity and low carrier concentrations at temperatures as high as 560°C in a 6 × 1017 cm−3 C-doped sample, and electron paramagnetic resonance (EPR) indicates that carbon acts as the compensating defect. Photoluminescence, in agreement with photo-EPR, suggests that the compensating center is CN; however, additional defects, which possibly limit compensation, are formed at carbon concentrations greater than 5 × 1017 cm−3.


GaN carbon hydride vapor phase epitaxy electron paramagnetic resonance photoluminescence Hall effect 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The work performed at NRL was supported by the Office of Naval Research and that at UAB by NSF DMR-1606765. We also thank Dr. Jack Lyons (NRL) for helpful discussions and Mr. Will Willoughby for some data analysis. The research in Poland was supported by the Department of the Navy, Office of Naval Research (ONRG-NICOP-N62909-17-1-2004) and by the Polish National Science Center through Project No. 2017/25/B/ST5/02897.


  1. 1.
    S. Tomiya, T. Hino, S. Goto, M. Takeya, and M. Ikeda, IEEE J. Sel. Top. Quantum Electron. 10, 1277 (2004).CrossRefGoogle Scholar
  2. 2.
    I.C. Kizilyalli, A.P. Edwards, O. Aktas, T. Prunty, and D. Bour, IEEE Trans. Electron Devices 62, 414 (2015).CrossRefGoogle Scholar
  3. 3.
    M. Bockowski, M. Iwinska, M. Amilusik, B. Lucznik, M. Fijalkowski, E. Litwin-Staszewska, R. Piotrzkowski, and T. Sochacki, J. Cryst. Growth 499, 1 (2018).CrossRefGoogle Scholar
  4. 4.
    J.A. Freitas, J.C. Culbertson, N.A. Mahadik, T. Sochacki, M. Iwinska, and M.S. Bockowski, J. Cryst. Growth 456, 113 (2016).CrossRefGoogle Scholar
  5. 5.
    H. Teisseyre, M. Bockowski, I. Grzegory, A. Kozanecki, B. Damilano, Y. Zhydachevskii, M. Kunzer, K. Holc, and U.T. Schwarz, Appl. Phys. Lett. 103, 011107 (2013).CrossRefGoogle Scholar
  6. 6.
    S. Heikman, S. Keller, S.P. DenBaars, and U.K. Mishra, Appl. Phys. Lett. 81, 439 (2002).CrossRefGoogle Scholar
  7. 7.
    A.Y. Polyakov, N.B. Smirnov, A.V. Govorkov, V.I. Vdovin, A.V. Markov, A.A. Shlensky, E. Prebble, D. Hanser, J.M. Zavada, and S.J. Pearton, J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 25, 686 (2007).CrossRefGoogle Scholar
  8. 8.
    J.L. Lyons, A. Janotti, and C.G. Van de Walle, Phys. Rev. B 89, 035204 (2014).CrossRefGoogle Scholar
  9. 9.
    M.J. Uren, M. Caesar, S. Karboyan, P. Moens, P. Vanmeerbeek, and M. Kuball, IEEE Electron Device Lett. 36, 826 (2015).CrossRefGoogle Scholar
  10. 10.
    M.J. Uren, M. Cäsar, M.A. Gajda, and M. Kuball, Appl. Phys. Lett. 104, 263505 (2014).CrossRefGoogle Scholar
  11. 11.
    E. Bahat-Treidel, F. Brunner, O. Hilt, E. Cho, J. Wurfl, and G. Trankle, IEEE Trans. Electron Devices 57, 3050 (2010).CrossRefGoogle Scholar
  12. 12.
    H. Tang, Z.Q. Fang, S. Rolfe, J.A. Bardwell, and S. Raymond, J. Appl. Phys. 107, 103701 (2010).CrossRefGoogle Scholar
  13. 13.
    D.O. Demchenko, I.C. Diallo, and M.A. Reshchikov, Phys. Rev. Lett. 110, 087404 (2013).CrossRefGoogle Scholar
  14. 14.
    A.F. Wright, J. Appl. Phys. 92, 2575 (2002).CrossRefGoogle Scholar
  15. 15.
    P.B. Klein and S.C. Binari, J. Phys. Condens. Matter 15, R1641 (2003).CrossRefGoogle Scholar
  16. 16.
    M. Iwinska, R. Piotrzkowski, E. Litwin-Staszewska, T. Sochacki, M. Amilusik, M. Fijalkowsk, B. Lucznik, and M. Bockowski, Appl. Phys. Express 10, 011003 (2017).CrossRefGoogle Scholar
  17. 17.
    W.R. Willoughby, M.E. Zvanut, S. Paudel, M. Iwinska, T. Sochacki, and M. Bockowski, J. Appl. Phys. 123, 161547 (2017).CrossRefGoogle Scholar
  18. 18.
    M. Matsubara and E. Bellotti, J. Appl. Phys. 121, 195701 (2017).CrossRefGoogle Scholar
  19. 19.
    J.A. Weil, J.R. Bolton, and J.E. Wertz, Elementary Theory and Practical Applications (New York: Wiley, 1994).Google Scholar
  20. 20.
    J.L. Lyons and C.G. Van de Walle, NPJ Comput. Mater. 3, 12 (2017).CrossRefGoogle Scholar
  21. 21.
    E.R. Glaser, M. Murthy, J.A. Freitas, D.F. Storm, L. Zhou, and D.J. Smith, Phys. B 401–402, 327 (2007).CrossRefGoogle Scholar
  22. 22.
    M.A. Reshchikov and H. Morkoç, J. Appl. Phys. 97, 061301 (2005).CrossRefGoogle Scholar
  23. 23.
    M.A. Reshchikov, A. Usikov, H. Helava, and Y. Makarov, Appl. Phys. Lett. 104, 032103 (2014).CrossRefGoogle Scholar
  24. 24.
    J.L. Lyons, A. Janotti, and C.G. Van de Walle, Appl. Phys. Lett. 97, 152108 (2010).CrossRefGoogle Scholar
  25. 25.
    D.S. Green, U.K. Mishra, and J.S. Speck, J. Appl. Phys. 95, 8456 (2004).CrossRefGoogle Scholar
  26. 26.
    R. Armitage, Q. Yang, and E.R. Weber, J. Appl. Phys. 97, 073524 (2005).CrossRefGoogle Scholar
  27. 27.
    A. Lesnik, M.P. Hoffmann, A. Fariza, J. Bläsing, H. Witte, P. Veit, F. Hörich, C. Berger, J. Hennig, A. Dadgar, and A. Strittmatter, Physica Status Solidi (b) 254, 1600708 (2016).CrossRefGoogle Scholar
  28. 28.
    M.A. Reshchikov, M. Vorobiov, D.O. Demchenko, Ü. ÖzgÜr, H. Morkoç, A. Lesnik, M.P. Hoffmann, F. HÖrich, A. Dadgar, and A. Strittmatter, Phys. Rev. B 98, 125207 (2018).CrossRefGoogle Scholar
  29. 29.
    A.E. Wickenden, D.D. Koleske, R.L. Henry, R.J. Gorman, M.E. Twigg, M. Fatemi, J.A. Freitas, and W.J. Moore, J. Electron. Mater. 29, 21 (2000).CrossRefGoogle Scholar
  30. 30.
    D.D. Koleske, A.E. Wickenden, R.L. Henry, and M.E. Twigg, J. Cryst. Growth 242, 55 (2002).CrossRefGoogle Scholar
  31. 31.
    C.H. Seager, A.F. Wright, J. Yu, and W. Götz, J. Appl. Phys. 92, 6553 (2002).CrossRefGoogle Scholar
  32. 32.
    T. Narita, K. Tomita, Y. Tokuda, T. Kogiso, M. Horita, and T. Kachi, J. Appl. Phys. 124, 215701 (2018).CrossRefGoogle Scholar
  33. 33.
    J. Neugebauer and C.G. Van de Walle, Phys. Rev. B 50, 8067 (1994).CrossRefGoogle Scholar
  34. 34.
    M.E. Zvanut, S. Paudel, U.R. Sunay, W.R. Willoughby, M. Iwinska, T. Sochacki, and M. Bockowski, J. Appl. Phys. 124, 075701 (2018).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • M. E. Zvanut
    • 1
    Email author
  • Subash Paudel
    • 1
  • E. R. Glaser
    • 2
  • M. Iwinska
    • 3
  • T. Sochacki
    • 3
  • M. Bockowski
    • 3
  1. 1.Department of PhysicsUniversity of Alabama at BirminghamBirminghamUSA
  2. 2.Naval Research LaboratoryWashingtonUSA
  3. 3.Institute of High Pressure Physics Polish Academy of SciencesWarsawPoland

Personalised recommendations