Hydroxyl Group Adsorption on GaN (0001) Surface: First Principles and XPS Studies
- 1 Downloads
Abstract
In this work, density functional theory (DFT) calculations and x-ray photoelectron spectroscopy (XPS) were carried out to investigate the hydroxyl groups on a wurtzite GaN (0001) surface. Surface treatments of GaN with piranha and HCl-based solutions were studied via XPS, and peak shifts in the Ga 2p and O 1s XPS spectra were caused by the signal change resulting from surface hydroxyl groups. Further DFT study revealed that the adsorption of hydroxyl groups is more favourable near the centre location than near gallium atoms. To investigate the thermodynamic stability of hydroxyl groups under different coverages, a surface phase diagram of hydroxyl group adsorption on the GaN (0001) surface was constructed over a coverage range of 1/6–1 monolayer (ML). The results showed that a high hydroxyl group coverage is more likely to be present on the GaN surface. The energy barrier for split hydroxyl groups is 1.41 eV. Therefore, the hydroxyl groups can be stable at room temperature. These results provide a systematic explanation of the adsorption between the hydroxyl groups and the GaN (0001) surface.
Keywords
GaN DFT hydroxyl group XPSPreview
Unable to display preview. Download preview PDF.
Notes
Acknowledgments
This work was supported by the National Science Foundation of China (Nos. 61574026, 11675198,), National Key R&D plan (Nos. 2016YFB0400600, 2016YFB0400601), Liaoning Provincial Natural Science Foundation of China (No. 201602176), China Postdoctoral Science Foundation Funded Project (No. 2016M591434), and the Major Projects of Science and Technology in Shandong Province (No. 2015ZDJQ03003). The authors acknowledge the Supercomputer Center of Dalian University of Technology for providing computing resources.
References
- 1.G. Steinhoff, O. Purrucker, M. Tanaka, M. Stutzmann, and M. Eickhoff, Adv. Funct. Mater. 13, 841 (2003).CrossRefGoogle Scholar
- 2.B. Baur, G. Steinhoff, J. Hernando, O. Purrucker, M. Tanaka, and B. Nickel, Appl. Phys. Lett. 87, 263901 (2005).CrossRefGoogle Scholar
- 3.T.J. Flack, B.N. Pushpakaran, and S.B. Bayne, J. Electron. Mater. 45, 2673 (2016).CrossRefGoogle Scholar
- 4.T. Knickerbocker, T. Strother, M.P. Schwartz, J.N. Russell, J. Butler, L.M. Smith, and R.J. Hamers, Langmuir 19, 1938 (2003).CrossRefGoogle Scholar
- 5.B.S. Kang, F. Ren, L. Wang, C. Lofton, W.W. Tan, S.J. Pearton, A. Dabiran, and A. Osinsky, Appl. Phys. Lett. 87, 023508 (2005).CrossRefGoogle Scholar
- 6.G.J. Zhang, H. Umezaw, H. Hata, T. Zako, T. Funatsu, I. Ohdomari, and H. Kawarada, Jpn. J. Appl. Phys. 44, 295 (2005).CrossRefGoogle Scholar
- 7.R.J. Hamersa, J.E. Butlerb, T. Lassetera, B.M. Nicholsa, J.N. Russell Jr., K.Y. Tsea, and W. Yanga, Diam. Relat. Mater. 14, 661 (2005).CrossRefGoogle Scholar
- 8.B.S. Kang, H.T. Wang, F. Ren, and S.J. Pearton, J. Appl. Phys. 104, 031101 (2008).CrossRefGoogle Scholar
- 9.M.S. Makowski, I. Bryan, Z. Sitar, C. Arellano, J. Xie, R. Collazo, and A. Ivanisevic, Appl. Phys. Lett. 103, 013701 (2013).CrossRefGoogle Scholar
- 10.F.S. Tulip, E. Eteshola, S. Desai, S. Mostafa, S. Roopa, and S.K. Islam, IEEE Sens. J. 13, 438 (2013).CrossRefGoogle Scholar
- 11.H.H. Lee, M. Bae, S.-H. Jo, J.-K. Shin, D.H. Son, C.-H. Won, H.-M. Jeong, J.-H. Lee, and S. Kang, Sensor 15, 18416 (2015).CrossRefGoogle Scholar
- 12.L. Jia-Dong, C. Jun-Jie, and M. Bin, Acta. Phys. Sin-CH ED. 63, 070204 (2014).Google Scholar
- 13.G. Steinhoff, M. Hermann, W.J. Schaff, L.F. Eastman, M. Stutzmann, and M. Eickhoff, Appl. Phys. Lett. 83, 177 (2003).CrossRefGoogle Scholar
- 14.R. Yakimovaa, G. Steinhoff, R.M. Petoral Jr., C. Vahlberg, and V. Khranovskyy, Biosens. Bioelectron. 22, 2780 (2007).CrossRefGoogle Scholar
- 15.G.M. Müntze, B. Baur, W. Schäfer, A. Sasse, J. Howgate, K. Röth, and M. Eickhoff, Biosens. Bioelectron. 64, 605 (2015).CrossRefGoogle Scholar
- 16.F. Ren and S.J. Pearton, Phys. Status Solidi C 9, 393 (2012).CrossRefGoogle Scholar
- 17.R.M. Petoral, G.R. Yazdi, A. Lloyd Spetz, R. Yakimova, and K. Uvdal, Appl. Phys. Lett. 90, 223904 (2007).CrossRefGoogle Scholar
- 18.H. Kim, P.E. Colavita, K.M. Metz, B.M. Nichols, B. Sun, J. Uhlrich, X. Wang, T.F. Kuech, and R.J. Hamers, Langmuir 22, 8121 (2006).CrossRefGoogle Scholar
- 19.R. Yakimova and R.M. Petoral, J. Phys. D Appl. Phys. 20, 6435 (2007).CrossRefGoogle Scholar
- 20.P. Lorenz, R. Gutt, T. Haensel, M. Himmerlich, J.A. Schaefer, and S. Krischok, Phys. Status Solidi C 7, 169 (2010).CrossRefGoogle Scholar
- 21.N. Majoul, S. Aouida, and B. Bessaïs, Appl. Surf. Sci. 331, 388 (2015).CrossRefGoogle Scholar
- 22.J.D. Swalen, D.L. Allara, J.D. Andrade, E.A. Chandross, S. Garoff, and J. Israelachvili, Langmuir 3, 932 (1987).CrossRefGoogle Scholar
- 23.Z. Wang, X. Zhou, and J. Zhang, J. Phys. Chem. C 113, 14071 (2009).CrossRefGoogle Scholar
- 24.P. Yuan, P.D. Southon, and Z. Liu, J. Phys. Chem. C 112, 15742 (2008).CrossRefGoogle Scholar
- 25.M.E. El-Naggar, A.G. Hassabo, and A.L. Mohamed, J. Colloid Interface Sci. 498, 413 (2017).CrossRefGoogle Scholar
- 26.T. Tavana, M.A. Khalilzadeh, H. Karimi-Maleh, A.A. Ensafi, H. Beitollahi, and D. Zareyee, J. Mol. Liq. 168, 69 (2012).CrossRefGoogle Scholar
- 27.D. Zherebetskyy, M. Scheele, Y. Zhang, N. Bronstein, C. Thompson, and D. Britt, Science 344, 1380 (2014).CrossRefGoogle Scholar
- 28.Q. Fu and T. Wagner, Surf. Sci. Rep. 62, 431 (2007).CrossRefGoogle Scholar
- 29.S. Giljean, M. Bigerelle, K. Anselme, and H. Haidara, Appl. Surf. Sci. 257, 8 (2011).Google Scholar
- 30.A. Arranz, C. Palacio, D. García-Fresnadillo, G. Orellana, and A. Navarro, Langmuir 24, 8667 (2008).CrossRefGoogle Scholar
- 31.A.N. Hattori, K. Endo, and K. Hattori, Appl. Surf. Sci. 256, 4745 (2010).CrossRefGoogle Scholar
- 32.J.L. Rouviere, J.L. Weyher, M. Seelmann-Eggebert, and S. Porowski, Appl. Phys. Lett. 73, 668 (1998).CrossRefGoogle Scholar
- 33.G. Rehman, M. Shafiq, S. Rashid Ahmad, S. Jalali-Asadabadi, M. Maqbool, I. Khan, H. Rahnamaye-Aliabad, and I. Ahmad, J. Electron. Mater. 45, 3314 (2016).CrossRefGoogle Scholar
- 34.N.J. Watkins, G.W. Wicks, and Y. Gao, Appl. Phys. Lett. 75, 2602 (1999).CrossRefGoogle Scholar
- 35.N.J. Watkins, G.W. Wicks, and Y. Gao, Appl. Phys. Lett. 75, 2602 (1999).CrossRefGoogle Scholar
- 36.G.-X. Qian and R.M. Martin, Phys. Rev. B 38, 7649 (1988).CrossRefGoogle Scholar
- 37.C.R. English, V.D. Wheeler, N.Y. Garces, N. Nepal, A. Nath, J.K. Hite, M.A. Mastro, and C.R. Eddy Jr., J. Vac. Sci. Technol., B 32, 03D106 (2014).CrossRefGoogle Scholar
- 38.K. Chang, J. Chu, and C. Cheng, Solid State Electron. 49, 1381 (2005).CrossRefGoogle Scholar
- 39.R. Karsten and S. Matthias, Phys. Rev. B 65, 321 (2001).Google Scholar
- 40.H. Ye, G. Chen, H. Niu, Y. Zhu, L. Shao, and Z. Qiao, J. Phys. Chem. C 117, 15976 (2013).CrossRefGoogle Scholar