Advertisement

Hydroxyl Group Adsorption on GaN (0001) Surface: First Principles and XPS Studies

  • Hengshan Wang
  • Heqiu ZhangEmail author
  • Jun Liu
  • Dongyang Xue
  • Hongwei Liang
  • Xiaochuan Xia
Article
  • 1 Downloads

Abstract

In this work, density functional theory (DFT) calculations and x-ray photoelectron spectroscopy (XPS) were carried out to investigate the hydroxyl groups on a wurtzite GaN (0001) surface. Surface treatments of GaN with piranha and HCl-based solutions were studied via XPS, and peak shifts in the Ga 2p and O 1s XPS spectra were caused by the signal change resulting from surface hydroxyl groups. Further DFT study revealed that the adsorption of hydroxyl groups is more favourable near the centre location than near gallium atoms. To investigate the thermodynamic stability of hydroxyl groups under different coverages, a surface phase diagram of hydroxyl group adsorption on the GaN (0001) surface was constructed over a coverage range of 1/6–1 monolayer (ML). The results showed that a high hydroxyl group coverage is more likely to be present on the GaN surface. The energy barrier for split hydroxyl groups is 1.41 eV. Therefore, the hydroxyl groups can be stable at room temperature. These results provide a systematic explanation of the adsorption between the hydroxyl groups and the GaN (0001) surface.

Keywords

GaN DFT hydroxyl group XPS 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was supported by the National Science Foundation of China (Nos. 61574026, 11675198,), National Key R&D plan (Nos. 2016YFB0400600, 2016YFB0400601), Liaoning Provincial Natural Science Foundation of China (No. 201602176), China Postdoctoral Science Foundation Funded Project (No. 2016M591434), and the Major Projects of Science and Technology in Shandong Province (No. 2015ZDJQ03003). The authors acknowledge the Supercomputer Center of Dalian University of Technology for providing computing resources.

References

  1. 1.
    G. Steinhoff, O. Purrucker, M. Tanaka, M. Stutzmann, and M. Eickhoff, Adv. Funct. Mater. 13, 841 (2003).CrossRefGoogle Scholar
  2. 2.
    B. Baur, G. Steinhoff, J. Hernando, O. Purrucker, M. Tanaka, and B. Nickel, Appl. Phys. Lett. 87, 263901 (2005).CrossRefGoogle Scholar
  3. 3.
    T.J. Flack, B.N. Pushpakaran, and S.B. Bayne, J. Electron. Mater. 45, 2673 (2016).CrossRefGoogle Scholar
  4. 4.
    T. Knickerbocker, T. Strother, M.P. Schwartz, J.N. Russell, J. Butler, L.M. Smith, and R.J. Hamers, Langmuir 19, 1938 (2003).CrossRefGoogle Scholar
  5. 5.
    B.S. Kang, F. Ren, L. Wang, C. Lofton, W.W. Tan, S.J. Pearton, A. Dabiran, and A. Osinsky, Appl. Phys. Lett. 87, 023508 (2005).CrossRefGoogle Scholar
  6. 6.
    G.J. Zhang, H. Umezaw, H. Hata, T. Zako, T. Funatsu, I. Ohdomari, and H. Kawarada, Jpn. J. Appl. Phys. 44, 295 (2005).CrossRefGoogle Scholar
  7. 7.
    R.J. Hamersa, J.E. Butlerb, T. Lassetera, B.M. Nicholsa, J.N. Russell Jr., K.Y. Tsea, and W. Yanga, Diam. Relat. Mater. 14, 661 (2005).CrossRefGoogle Scholar
  8. 8.
    B.S. Kang, H.T. Wang, F. Ren, and S.J. Pearton, J. Appl. Phys. 104, 031101 (2008).CrossRefGoogle Scholar
  9. 9.
    M.S. Makowski, I. Bryan, Z. Sitar, C. Arellano, J. Xie, R. Collazo, and A. Ivanisevic, Appl. Phys. Lett. 103, 013701 (2013).CrossRefGoogle Scholar
  10. 10.
    F.S. Tulip, E. Eteshola, S. Desai, S. Mostafa, S. Roopa, and S.K. Islam, IEEE Sens. J. 13, 438 (2013).CrossRefGoogle Scholar
  11. 11.
    H.H. Lee, M. Bae, S.-H. Jo, J.-K. Shin, D.H. Son, C.-H. Won, H.-M. Jeong, J.-H. Lee, and S. Kang, Sensor 15, 18416 (2015).CrossRefGoogle Scholar
  12. 12.
    L. Jia-Dong, C. Jun-Jie, and M. Bin, Acta. Phys. Sin-CH ED. 63, 070204 (2014).Google Scholar
  13. 13.
    G. Steinhoff, M. Hermann, W.J. Schaff, L.F. Eastman, M. Stutzmann, and M. Eickhoff, Appl. Phys. Lett. 83, 177 (2003).CrossRefGoogle Scholar
  14. 14.
    R. Yakimovaa, G. Steinhoff, R.M. Petoral Jr., C. Vahlberg, and V. Khranovskyy, Biosens. Bioelectron. 22, 2780 (2007).CrossRefGoogle Scholar
  15. 15.
    G.M. Müntze, B. Baur, W. Schäfer, A. Sasse, J. Howgate, K. Röth, and M. Eickhoff, Biosens. Bioelectron. 64, 605 (2015).CrossRefGoogle Scholar
  16. 16.
    F. Ren and S.J. Pearton, Phys. Status Solidi C 9, 393 (2012).CrossRefGoogle Scholar
  17. 17.
    R.M. Petoral, G.R. Yazdi, A. Lloyd Spetz, R. Yakimova, and K. Uvdal, Appl. Phys. Lett. 90, 223904 (2007).CrossRefGoogle Scholar
  18. 18.
    H. Kim, P.E. Colavita, K.M. Metz, B.M. Nichols, B. Sun, J. Uhlrich, X. Wang, T.F. Kuech, and R.J. Hamers, Langmuir 22, 8121 (2006).CrossRefGoogle Scholar
  19. 19.
    R. Yakimova and R.M. Petoral, J. Phys. D Appl. Phys. 20, 6435 (2007).CrossRefGoogle Scholar
  20. 20.
    P. Lorenz, R. Gutt, T. Haensel, M. Himmerlich, J.A. Schaefer, and S. Krischok, Phys. Status Solidi C 7, 169 (2010).CrossRefGoogle Scholar
  21. 21.
    N. Majoul, S. Aouida, and B. Bessaïs, Appl. Surf. Sci. 331, 388 (2015).CrossRefGoogle Scholar
  22. 22.
    J.D. Swalen, D.L. Allara, J.D. Andrade, E.A. Chandross, S. Garoff, and J. Israelachvili, Langmuir 3, 932 (1987).CrossRefGoogle Scholar
  23. 23.
    Z. Wang, X. Zhou, and J. Zhang, J. Phys. Chem. C 113, 14071 (2009).CrossRefGoogle Scholar
  24. 24.
    P. Yuan, P.D. Southon, and Z. Liu, J. Phys. Chem. C 112, 15742 (2008).CrossRefGoogle Scholar
  25. 25.
    M.E. El-Naggar, A.G. Hassabo, and A.L. Mohamed, J. Colloid Interface Sci. 498, 413 (2017).CrossRefGoogle Scholar
  26. 26.
    T. Tavana, M.A. Khalilzadeh, H. Karimi-Maleh, A.A. Ensafi, H. Beitollahi, and D. Zareyee, J. Mol. Liq. 168, 69 (2012).CrossRefGoogle Scholar
  27. 27.
    D. Zherebetskyy, M. Scheele, Y. Zhang, N. Bronstein, C. Thompson, and D. Britt, Science 344, 1380 (2014).CrossRefGoogle Scholar
  28. 28.
    Q. Fu and T. Wagner, Surf. Sci. Rep. 62, 431 (2007).CrossRefGoogle Scholar
  29. 29.
    S. Giljean, M. Bigerelle, K. Anselme, and H. Haidara, Appl. Surf. Sci. 257, 8 (2011).Google Scholar
  30. 30.
    A. Arranz, C. Palacio, D. García-Fresnadillo, G. Orellana, and A. Navarro, Langmuir 24, 8667 (2008).CrossRefGoogle Scholar
  31. 31.
    A.N. Hattori, K. Endo, and K. Hattori, Appl. Surf. Sci. 256, 4745 (2010).CrossRefGoogle Scholar
  32. 32.
    J.L. Rouviere, J.L. Weyher, M. Seelmann-Eggebert, and S. Porowski, Appl. Phys. Lett. 73, 668 (1998).CrossRefGoogle Scholar
  33. 33.
    G. Rehman, M. Shafiq, S. Rashid Ahmad, S. Jalali-Asadabadi, M. Maqbool, I. Khan, H. Rahnamaye-Aliabad, and I. Ahmad, J. Electron. Mater. 45, 3314 (2016).CrossRefGoogle Scholar
  34. 34.
    N.J. Watkins, G.W. Wicks, and Y. Gao, Appl. Phys. Lett. 75, 2602 (1999).CrossRefGoogle Scholar
  35. 35.
    N.J. Watkins, G.W. Wicks, and Y. Gao, Appl. Phys. Lett. 75, 2602 (1999).CrossRefGoogle Scholar
  36. 36.
    G.-X. Qian and R.M. Martin, Phys. Rev. B 38, 7649 (1988).CrossRefGoogle Scholar
  37. 37.
    C.R. English, V.D. Wheeler, N.Y. Garces, N. Nepal, A. Nath, J.K. Hite, M.A. Mastro, and C.R. Eddy Jr., J. Vac. Sci. Technol., B 32, 03D106 (2014).CrossRefGoogle Scholar
  38. 38.
    K. Chang, J. Chu, and C. Cheng, Solid State Electron. 49, 1381 (2005).CrossRefGoogle Scholar
  39. 39.
    R. Karsten and S. Matthias, Phys. Rev. B 65, 321 (2001).Google Scholar
  40. 40.
    H. Ye, G. Chen, H. Niu, Y. Zhu, L. Shao, and Z. Qiao, J. Phys. Chem. C 117, 15976 (2013).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Hengshan Wang
    • 1
  • Heqiu Zhang
    • 1
    Email author
  • Jun Liu
    • 1
  • Dongyang Xue
    • 1
  • Hongwei Liang
    • 1
  • Xiaochuan Xia
    • 1
  1. 1.School of MicroelectronicsDalian University of TechnologyDalianChina

Personalised recommendations